Những câu hỏi liên quan
PN
Xem chi tiết
H24
Xem chi tiết
LP
16 tháng 9 2023 lúc 21:00

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

Bình luận (0)
H24
Xem chi tiết
AH
16 tháng 9 2023 lúc 23:21

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

Bình luận (0)
MH
Xem chi tiết
HA
16 tháng 11 2016 lúc 20:31

tink nhé 

gọi ƯCLN(4n+3;6n+5)=k

=>4n+3 chia hết cho k      | =>3(4n+3) chia hết cho k

    6n+5 chia hết cho k      | =>2(6n+5) chia hết cho k

=>12n+9 chia hết cho k

=>12n+10 chia hết cho k

=>(12n+10)-(12n+9) chia hết cho k

=>1chia hết cho k =>k=1

=>đpcm

chúc bạn học tốt

Bình luận (0)
NT
16 tháng 11 2016 lúc 20:31

 4n + 3 và số 6n + 5 là hai số nguyên tố cùng nhau?

goi UCLN(4n+3,6n+5)=d 

=>4n+3 chia hết cho d=>24n+18 chia hết cho d

=>6n+5 chia hết cho d=>24n+20 chia hết cho d

=>(24n+20)-(24n+18) chia hết cho d

=>2 chia hết cho d

mà 2 chia hết cho 1;2

=>d=1;2

.....

đang ban bn làm tiếp nhé

Bình luận (0)
TT
10 tháng 10 2023 lúc 16:24

chứng minh rằng  với mọi số tự nhiên n t luôn có (n+1) (n+3) (n+5)

Bình luận (0)
MD
Xem chi tiết
Xem chi tiết
NN
25 tháng 2 2020 lúc 14:47

mk cx hok bồi nek

sao thấy đề bồi này nó cứ dễ sao ấy

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
26 tháng 10 2021 lúc 20:01

a: \(\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\Leftrightarrow d=1\)

Vậy: 2n+3 và 3n+5 là hai số nguyên tố cùng nhau

Bình luận (0)
DC
Xem chi tiết
DC
Xem chi tiết