Chứng tỏ rằng số A = 0,3.( 19831983- 19171917 ) là một sô nguyên
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho các số nguyên
a b c d , , , . Chứng tỏ rằng x, y là hai số đối nhau, biết:
Chứng tỏ rằng S = - ( a - b - c ) + ( -c + b + a) - ( a + b ) là 1 sô nguyên âm
Giúp mk đc 0 ;(
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
GIÚP TỚ NKE EVERYONE. I WILL TICK FOR YOU.
Đêm ùi mà còn nhờ 1 đống zậy muốn xỉu lun oy
Toán khó phải có người lo mink ko lo đc mấy bn lo dùm mink nka
Chứng tỏ rằng:\(A=0,3\times \left(1983^{1983}-1917^{1917}\right)\) là một số nguyên.
Ta có : \(A=0,3.\left(1983^{1980}-1917^{1916}\right)\) ( Sửa đề : Đề sai rồi )
Ta thấy \(1983^{1980}\) tận cùng là 1
\(1917^{1916}\) tận cùng là 1
Don đó \(\left(1983^{1980}-1917^{1916}\right)\) tận cùng 0
Do đó \(0,3.\left(1983^{1980}-1917^{1917}\right)\) nguyên
Do đó A là số nguyên ( đpcm )
\(A=0,3.\left(1983^{1983}-1917^{1917}\right)=\frac{3\left(1983^{1983}-1917^{1917}\right)}{10}\)
Để A nguyên thì \(\left(1983^{1983}-1917^{1917}\right)⋮10\)
rồi bạn xét chữ số tận cùng của 19831983 và 19171917 , chúng sẽ đều có tận cùng là 7, trừ cho nhau có tận cùng là 0
suy ra nó chia hết cho 10
Cho bốn sô nguyên dương a, b, c, d sao cho: a2+b2=c2+d2 . Chứng tỏ rằng tổng
bốn số a + b + c + d là một hợp số.
Câu hỏi của Lê Linh An - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo nhé!
Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)
Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)
Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)
\(\implies\) \(a+b+c+d\) chia hết cho \(2\)
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số\(\left(đpcm\right)\)
Cho a;b thuộc Z và a>b.
Chứng tỏ rằng nếu b=0 hoặc b là số nguyên dương thì a là sô nguyên dương
Giúp mk vs nha! (^~^) Arigatou trước
Nếu b=0; a>b => a>0 => a nguyên dương
Nếu b>0; a>0 => a>0 => a nguyên dương
Vậy nếu b=0 hoặc b nguyên dương thì a nguyên dương
Bài 1: Tìm số dư trong phép chia 31996 cho 13
Bài 2: Chứng minh rằng (21996-2) : 31
Bài 3: Chứng minh rằng 0,3(19831983-19171917) là một số nguyên
Bài 4 : Chứng minh rằng :
a) 24n-1 chia hết cho 15 b) 270+370 chia hết cho 13
c) 19801930+19451975+1 chia hết cho 7 d) 122n+1-11n+2 chia hết cho 133
e) 22225555+55552222 chia hết cho 7
g, 6^1001 + 1 chia hết cho 7
Bài 5 : Tìm số dư trong phép chia :
a) Chia 43624362 cho 11 b) Chia 35150 cho 425 c) Chia 8! Cho 11
Bài 6 : Chứng minh rằng : 14k+24k+34k+44k không chia hết cho 5 với mọi k N
Bài 7 : Chứng minh rằng nếu n không chia hết cho 3 thì 32n+3n+1 chia hết cho13
Tìm số tự nhiên x,y biết x,y là hai số nguyên tố.chứng tỏ rằng x,y là hai sô nguyên tố cùng nhau
chứng tỏ rằng p = a + b là một số nguyên tố thì A và B là hai số nguyên tố cùng nhau
khó quá , các bạn giúp tớ với