Chứng minh rằng nếu : a/b = b/c = c/a thì a=b=c
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
ta có: \(\frac{a^2+c^2}{b^2+a^2}\)do \(a^2=bc\)
=>\(\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
vậy \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
\(\text{Ta có : }\frac{a^2+c^2}{b^2+a^2}\text{ do }a^2=bc\)
\(\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
\(\text{Vậy }\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
a)Chứng minh rằng nếu a^4 +b^4 +c^4 +d^4 =4abcd và a,b,c,d là các số dương thì a =b=c=d
b)Chứng minh rằng nếu m= a+ b +c thì (am+ bc )(bm+ac)(cm+ab)= (a+b)^2 (a+c )^2 (b+c)^2
b, Ta có \(m=a+b+c\)
\(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)
CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)
Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)
Bài 4: Chứng minh rằng: -(a-b-c)+(-a+b-c)-(-a+b+c)=-(a-b+c)
Bài 5: Cho M=(-a+b)-(b+c-a)+(c-a) Chứng minh rằng: Nếu a<0 thì M>0
Mình cần gấp ạ!
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
cho a,b,c là các số thực thỏa man: a+\(\dfrac{1}{b}=b+\dfrac{1}{c}=c+\dfrac{1}{a\backslash}\).
a) chứng minh nếu a,b,c đôi một khác nhau thì a2b2c2=1
b) chứng minh rằng nếu a,b,c>0 thì a=b=c
Chứng minh rằng ,nếu (a-b-c)+(-a+b-c)=-(a-b+c) thì :a=b+c
Ta có: (a-b-c)+(-a+b-c)=-(a-b+c)
a-b-c-a+b-c=-(a-b+c)
-2c=-a+b-c
-2c-(-a+b-c)=0
-2c+a-b+c=0
a-b-c=0
a-(b+c)=0
a=b+c
Chứng minh rằng nếu a/b= b/ c= c/a thì a=b=c
chứng minh rằng nếu a/b=b/c=c/a thì a=b=c
chứng minh rằng nếu a,b,c thuộc N* và b < c thì a/b > a/c
b < c
\(\Rightarrow\dfrac{1}{b}>\dfrac{1}{c}\)
Vì n là số dương
\(\Rightarrow\dfrac{a}{b}>\dfrac{a}{c}\)
Ta có: b<c
\(\Rightarrow\)ab<ac
\(\Rightarrow\)\(\dfrac{a}{c}< \dfrac{a}{b}\)(tính chất của 2 phân số)
CHO MÌNH 1 TICK NHA
1)chứng minh rằng nếu a+b+c=1 thì a^4 +c^4 +b^4 =abc
2) với a,b,c dương chứng minh rằng 2căna +2cănb+2cănc +a^2+b^2+c^2 >= 3(a+b+c)
mk chẳng biết nguyen hoang phi hung ak
cho a+5/a-5=b+6/b-6. Chứng minh rằng: a/b=5/6.
Chứng minh rằng nếu: a/b=c/d thì a^2+b^2/c^2+d^2=ab/cd
a: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)
=>(a+5)(b-6)=(a-5)(b+6)
=>ab-6a+5b-30=ab+6a-5b-30
=>-6a+5b=6a-5b
=>-12a=-10b
=>6a=5b
=>\(\dfrac{a}{b}=\dfrac{5}{6}\)
b: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)