Những câu hỏi liên quan
NL
Xem chi tiết
TD
Xem chi tiết
TM
Xem chi tiết
PN
Xem chi tiết
DA
Xem chi tiết
HX
Xem chi tiết
LV
9 tháng 2 2019 lúc 15:32

Ta có:

\(2^{2000}=\left(2^4\right)^{500}=16^{500}\)

Mà các số có chữ số tận cùng là 6 thì có mũ bao nhiêu lên cx có tận cùng là 6.( đây là kiến thức cung cấp để giải bài tập, bn dừng hỏi vì sao)

\(\Rightarrow2^{2000}=16^{500}=\left(.......6\right)\\ \Leftrightarrow2^{2000}-1=\left(.....6\right)-1=\left(.....5\right)\\ \Rightarrow2^{2000}-1⋮5\)

Bình luận (0)
H24
9 tháng 2 2019 lúc 15:32

Sử dụng phép đồng dư:

\(2^{20}\equiv1\)(mod 5);

\(2^{20^{100}}\equiv1^{100}\equiv1\)(mod 5);

\(2^{2000}-1\equiv1-1=0\)(mod 5).

Vậy \(A⋮5\)

Bình luận (0)
TT
Xem chi tiết
LC
28 tháng 7 2015 lúc 20:42

a) Ta thấy: n2 có tận cùng là 1,4,5,6,9

=>n2+2 có tận cùng là 3,6,7,8,1 không chia hết cho 5

=>n2+2 không chia hết cho 5

=>Không tồn tại số tự nhiên n.

Bình luận (0)
LC
Xem chi tiết
H24
6 tháng 2 2016 lúc 21:37

a, 
8^5 = (2³)^5 = 2^15 
<=> 2^15+2^11 = (2^11)[(2^4)+1] 
= (2^11)17 chia hết 17

b, 
69(69 -5) = (69).(64) 
64=(32).2 
<=> 69^2-69.5 là bội số của 64, mà 64 là bội số của 32, nên chia hết cho 32 
c, 

Ta có : 328^3 + 172^3 = ( 328 + 172 )( 328^2 - 328 . 172 + 172^2 ) 
= 500 . [ (2 . 191 )^2 - 382 . 4 . 43 + ( 2 . 86 )^2 ] 
= 500 . [ 4 . 191^2 - 4 . 382 . 43 + 4 . 86^2 ] 
= 2000 . ( 191^2 - 382 . 43 + 86^2 ) 
Vì 2000 chia hết cho 2000 nên 2000 . ( 191^2 - 382 . 43 + 86^2 ) chia hết cho 2000 (đpcm)

 

d, 

Ta có a^n + b^n =(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ 
19^19 + 69^19 = (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44

Bình luận (0)
NT
Xem chi tiết
PT
9 tháng 10 2016 lúc 14:03

ab - ba = (10a + b) - (10b + a) = 10a + b - 10b - a = 9a - 9b = 9(a - b) chia hết cho 9

21132000 = (21134)500 = (...1)500 tận cùng là 1 ; 20112000 tận cùng là 1

=> 21132000 - 20112000 tận cùng là : 1 - 1 = 0 nên hiệu trên chia hết cho 2 và 5

Bình luận (0)