Những câu hỏi liên quan
KN
Xem chi tiết
TL
1 tháng 3 2020 lúc 13:48

Ta có:

\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)

\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)

\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa
KL
Xem chi tiết
AN
24 tháng 9 2018 lúc 9:20

\(x^2-3y^2+2xy-2x+6y-4=0\)

\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)

Làm nôt

Bình luận (0)
H24
4 tháng 3 2019 lúc 8:56

Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)

Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)

\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)

Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)

\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)

Đến đây bí!

Bình luận (0)
LL
Xem chi tiết
QN
Xem chi tiết
BC
18 tháng 2 2024 lúc 17:00

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

Bình luận (0)
NN
13 tháng 12 2024 lúc 19:32

3x + 9xy - 6y
 

 

Bình luận (0)
KL
Xem chi tiết
H24
9 tháng 8 2023 lúc 16:18

a)\(2x^2+3x+5=0\)

\(\Leftrightarrow4x^2+6x+10=0\)

\(\Leftrightarrow\left(2x\right)^2+2.2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{31}{4}=0\)

\(\Leftrightarrow\left(2x+\dfrac{3}{2}\right)^2=-\dfrac{31}{4}\left(vn\right)\)

b) PT \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=-1\left(vn\right)\) ( do \(VT\ge0\forall x,y\) )

c) PT \(\Leftrightarrow\left(x^2-2xy+y^2\right)+y^2+2x-6y+10=0\)

\(\Leftrightarrow\left(x-y\right)^2+2\left(x-y\right)+1+y^2-4y+4+5=0\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=-5\left(vn\right)\)

Vậy PT vô nghiệm

Bình luận (0)
NT
9 tháng 8 2023 lúc 16:18

a: 2x^2+3x+5=0

=>x^2+3/2x+5/2=0

=>x^2+2*x*3/4+9/16+31/16=0

=>(x+3/4)^2+31/16=0(vô lý)

b: x^2-2x+y^2-4y+6=0

=>x^2-2x+1+y^2-4y+4+1=0

=>(x-1)^2+(y-2)^2+1=0(vô lý)

 

Bình luận (0)
QM
Xem chi tiết
NL
Xem chi tiết
HT
27 tháng 5 2017 lúc 21:45

<=>\(x^2+2x\left(y-1\right)-3y^2+6y-8=0\)

coi phương trình là phương trình bậc 2 theo ẩn x nên ta có

\(\Delta^'=\left(y-1\right)^2+3y^2-6y+8\)

\(\Delta^'=4y^2-8y+9=\left(2y-4\right)^2-7\)

để phương trình có nghiệm x ,y nguyên thì \(\Delta^'=k^2\)

với k là số tự nhiên

\(\left(2y-4\right)^2-7=k^2\Leftrightarrow\left(2y-4+k\right)\left(2y-4-k\right)=7\)

khi đó (2y-4+k) và (2y-4-k) là ước của 7 là (1,7) do đó ta có hệ

\(\hept{\begin{cases}2y-4+k=7\\2y-4-k=1\end{cases}}\Leftrightarrow4y=16\Leftrightarrow y=4\)

với y=4 thay vào ta có 

\(\Delta^'=\left(2.4-4\right)^2-7=9\)

\(\orbr{\begin{cases}x=\left(1-y\right)-3=1-4-3=-6\\x=\left(1-y\right)+3=1-4+3=0\end{cases}}\)

vậy (x,y)= (0,4) hoặc (-6,4)

Bình luận (0)
HG
Xem chi tiết
LA
19 tháng 5 2016 lúc 20:34

1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)

 Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c

=> a+b+c=0=> a^3+b^3+c^3=3abc=0

=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0

=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0

tìm được x=3

2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)

<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

<=> (x-y-1)^2=0 và (y+2)^2=0

=> x=-1;y=-2

Bình luận (0)
HH
Xem chi tiết