tìm x,y biết x^3+y^3/6=x^3+2y^3/4 và │xy│=2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tìm x,y biết \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và │xy│=2
\(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) <=> 2(x3+y3)=3(x3-2y3)
<=> 2x3+2y3=3x3-6y3
<=> x3=8y3 <=> x3=(2y)3 => x=-2y và x=2y
+/ x=2y => /xy/=2 <=> /2y.y/=2 <=> y2=1 => y=(-1,1) => x=(-2,2)
+/ x=-2y => /xy/=/-2y2/ =2 => y2=1 => y=(-1,1) => x=(-2,2)
Đáp số: Các cặp nghiệm (x,y) của PT là: (-2,-1) và (2,1)
Tìm x,y biết :
1,(x-3)(y-1)=7
2,xy+3x-7y=21
3,xy+3x-2y=11
4,(x+1)(y-1)=-2
5,|x|=2x-6
6,|2y-4|<2
7,x(x+2)<0
8,x(x-y)=5
9,x(x-2)<0
10,(x+2)(3-x)>0
11,(x-2y)(y-1)=5
Bài 1 : Tìm x ,y,z biết:
a, 3/x-1 = 4/y-2 = 5/z-3 và x+y+z = 18
b, 3/x-1 = 4/y-2 = 5/z-3 và x.y.z = 192
Bài 2 : Tìm x,y,z biết : x^3+y^3/6 = x^3-2y^3/4 và x^6.y^6 = 64
Bài 3 : Tìm x,y,z biết :x+4/6 = 3y-1/8 = 3y-x-5/x
Bài 4 :Tìm x,y,z biết : x+y+2005/z = y+z-2006 = z+x+1/y = 2/x+y+z
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
cũng dễ thôi
Bài 1. Tìm x,y ϵ Z biết:
a) xy - 2x - y = 1
b) y ( x - 1 ) - x = 8
c) xy - 3x + 2y = 11
d) 2/50 + 2/48 + 2/154 + ... + 2/x(x+3) = 202/1540
e) ( 1/ 1 . 2 . 3 . 4 + 1/ 2 . 3 . 4 . 5 + 1/ 3 . 4 . 5 . 6 + ... + 1/ 7 . 8 . 9 . 10 ) . x = 119/720
Trình bày đầy đủ nhé =)))))
Bài 10. Tìm số tự nhiên n, biết rằng: 1 + 2 + 3 + ..... + n = 820
Bài 11. Tìm các số tự nhiên x, y, sao cho:
a/ (2x+1)(y-3) = 10
b/ (3x-2)(2y-3) = 1
c/ (x+1)(2y-1) = 12
d/ x + 6 = y(x-1)
e/ x-3 = y(x+2)
f/ x + 2y + xy = 5
g/ 3x + xy + y = 4
Bài 12. Tìm số nguyên tố p sao cho:
a/ p + 2 và p + 4 là số nguyên tố
b/ p + 94 và p + 1994 cũng là số nguyên tố
Rút gọn rồi tính giá trị của biểu thức
a)M=(x^2+3xy-3x^3)+(2y^3-xy+3x^3)-y^3 tại x=5 và y=4
b) N= x^2(x+y)-y(x^2-y^2) tại x=-6 y=8
c)P=x^2+1/2x+1/16 biết x= 3/4
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
Tìm các số nguyên x, y biết:
a) ( x -3 ) ( y + 2 ) = 7
b) xy - 2y + 3x - 6 = 3.
\(a.\left(x-3\right)\cdot\left(y+2\right)=7\)Ư(7) = {1;-1;7;-7}
\(=>x-3\inƯ\left(7\right);y+2\inƯ\left(7\right)\)
Th1 : x - 3 = 1 ; y + 2 = 7
x-3 =1
=> x =4
y + 2 =7
=> y=5
Th2 : x - 3 = 7 ; y + 2 = 1
x-3 = 7
=> x = 10
y + 2 =1
=> y = -1
Th3 : x - 3 = -1 ; y + 2 = -7
x - 3 = -1
=> x = 2
y + 2 = -7
=> y= -9
Th4 : x - 3 = -7 ; y + 2 = -1
x - 3 = -7
=> x = -4
y+2 =-1
=> y=-3
Vậy {(y=-3 ; x=-4), (y=-9;x=2);(y=-1;x=10); ( y=5 ; x =4 )}
b. xy -2y + 3x-6 = 3
y(x-2) + 3(x-2)= 3
(x-2) . (y + 3) = 3
x-2 ϵ Ư(3); y+3 ϵ Ư(3)
Ư(3) = {-1;1;-3;3)
Th1 : x -2 = -1 ; y+3 = -3
x-2 =-1 y+3=-3
=> x=1 => y=-6
Th2 : x -2 = -3 ; y+3 = -1
x-2=-3 y+3=-1
=> x= -1 => y =-4
Th3 : x -2 = 1; y+3 = 3
x-2 = 1 y+3=3
=> x=3 => y = 0
Th4 : x -2 = 3; y+3 = 1
x- 2 = 3 y +3 = 1
=> x = 5 => y = -2
Vậy {(y=-6 ; x=1), (y=-4;x=-1);(y=0;x=3); ( y=-2 ; x =5 )}
a, (\(x\) - 3)(\(y\) + 2) = 7
Ư(7) = { -7; -1; 1; 7}
Lập bảng ta có:
\(x-3\) | -7 | -1 | 1 | 7 |
\(x\) | -4 | 2 | 4 | 10 |
\(y\) + 2 | -1 | -7 | 7 | 1 |
\(y\) | -3 | -9 | 5 | -1 |
Theo bảng trên ta có:
Các cặp giá trị \(x;y\) nguyên thỏa mãn đề bài lần lượt là:
(\(x;y\)) = (-4; -3); (2; -9); (4; 5); (10; -1)
b, \(xy\) - 2\(y\) + 3\(x\) - 6 = 3
(\(xy\) + 3\(x\)) = 3 + 2\(y\) + 6
\(x\left(y+3\right)\) = 9 + 2\(y\)
\(x\) = (9 + 2\(y\)) : (\(y\) + 3)
\(x\) \(\in\) Z ⇔ 9 + 2\(y\)⋮\(y+3\) ⇒ 2\(y\) + 6 + 3 ⋮ \(y\)\(+3\)⇒2(\(y\)+3) + 3⋮\(y\)+ 3
⇒ 3 ⋮ \(y\) + 3
Ư(3) = (-3; -1; 1; 3}
Lập bảng ta có:
\(y\) + 3 | -3 | -1 | 1 | 3 |
\(y\) | -6 | -4 | -2 | 0 |
\(x\) = (9 + 2\(y\)): (\(y\)+3) | 1 | -1 | 5 | 3 |
(\(x;y\)) | (1;-6) | (-1; -4) | (5;-2) | (3;0) |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài lần lượt là:
(1; -6); (-1; -4); (5; -2) ;(3; 0)
Tìm các số nguyên x,y biết:
a)2x(2y+3)–(2y+3)=7
b)x(y+4)–3(y+4)=19
c)xy–5x+2y–10=31
a) pt <=> (2x-1)(2y+3)=7
TH1: 2x-1=7 và 2y+3=1
<=> x = 4 và y = -1
TH2: 2x - 1 = -7 và 2y + 3 = -1
<=> x = -3 và y = -2
TH3: 2x-1=1 và 2y+3=7
<=> x = 1 và y=2
TH4: 2x-1=-1 và 2y+3=-7
<=> x=0 và y=-5
b) pt <=> (x-3)(y+4)=19
TH1: x - 3=1 và y+4=19
<=> x=4 và y=15
TH2: x-3=-1 và y+4=-19
<=> x=2 và y=-23
TH3: x-3=19 và y+4=1
<=> x=22 và y=-3
TH4: x-3=-19 và y+4=-1
<=> x=-16 và y=-5
c) pt <=> (y-5)(x+2)=31
TH1: y-5=31 và x+2=1
<=> y=36 và x=-1
TH2: y-5=-31 và x+2=-1
<=> y=-26 và x=-3
TH3: y-5=1 và x+2=31
<=> y=6 và x=29
Th4: y-5=-1 và x+2=-31
<=> y=4 và x=-33
Thu gọn đa thức, tìm bậc và tính giá trị đa thức tại x = −1; y =1:
B=\(\dfrac{3}{4}XY^2-\dfrac{1}{3}X^2Y-\dfrac{5}{6}XY^2+2X^2Y\)
\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)
Bậc:3
Thay x=-1, y=1 vào B ta có:
\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)