Tìm số tư nhiên x,n sao cho x4+24n+2 là một số nguyên tố
Tìm số tự nhiên n để : n + 3 ; 2n2 + 12n + 19 ; 4n2 + 24n + 37 đều là số nguyên tố .
n = ?
Giả sử n là số tự nhiên lớn hơn 1sao cho 8n + 1 và 24n + 1 là số chính phương
CMR 8n + 3 là số nguyên tố
1) Tìm số dư khi chia \(2^{30}\) cho \(10^3\)
2) Tìm số tự nhiên n để các số \(n+3;2n^2+12n+19;4n^2+24n+37\) đồng thời là số nguyên tố
3) Thừa số lớn nhất khi phân tích số \(2^{16}-16\) ra thừa số nguyên tố
4) Giá trị của x+y biết x>0; y>0 và x+y=xy
Bài 1: tìm số tự nhiên n sao cho n-1; n+1;n+5;n+7;n+11;n+13 đồng thời là số nguyên tố
Bài 2: tìm cấc số nguyên tố p sao cho p^3+p^2+11p+2 là số nguyên tố
Tìm các số tự nhiên x;n sao cho số \(p=x^4+2^{4n+2}\) là một số nguyên tố
Ta có: \(x^4+2^{4n+2}=\left(x^2\right)^2+\left(2^{2n+1}\right)^2=\left(x^2\right)^2+2.x^2.2^{2n+1}+\left(2^{2n+1}\right)^2-2.x^2.2^{2n+1}\)
\(=\left(x^2+2^{2n+1}\right)^2-4.2^{2n}.x^2=\left(x^2+2^{2n+1}\right)^2-\left(2.2^n.x\right)^2=\left(x^2+2^{2n+1}\right)^2-\left(2^{n+1}.x\right)^2\)
\(=\left(x^2-2^{n+1}.x+2^{2n+1}\right)\left(x^2+2^{n+1}.x+2^{2n+1}\right)\)
Để A là số nguyên tố thì \(\orbr{\begin{cases}x^2-2^{n+1}.x+2^{2n+1}=1\\x^2+2^{n+1}.x+2^{2n+1}=1\end{cases}}\)
Do x, n là số tự nhiên nên \(x^2+2^{n+1}.x+2^{2n+1}>2>1\)
Vậy thì \(x^2-2^{n+1}.x+2^{2n+1}=1\)
\(\Leftrightarrow\left(x-2^n\right)^2+2^{2n}=1\Leftrightarrow\hept{\begin{cases}n=0\\\left(x-1\right)^2=0\end{cases}}\)
Vậy \(\hept{\begin{cases}n=0\\x=1\end{cases}}\)
mọi người giúp mình nhé
số tự nhiên n để các số n+3, 2n^2 +12n +19; 4n^2 +24n +37 là các số nguyên tố
A=n+3; B=n^2+12.n+19; C=4n^2+24n+37
B=2A^2+1
C=4A^2+1
n=0=>\(\hept{\begin{cases}A=3\\B=19\\C=37\end{cases}}\) n= nhận
\(Voi.n=2\left(chanduynhat\right)\)\(\hept{\begin{cases}A=5\\B=51\\C=101\end{cases}}\) Loại B chia hết cho 3
với n khác >2 vì A nguyên tố => n=2k vì nếu n lẻ=>A không nguyên tố.
k chỉ thể là \(\orbr{\begin{cases}3t+1\\3t+2\end{cases}}\) Vì nếu k=3t thì A chia hết cho 3 ko ntố
=> \(\orbr{\begin{cases}n=2\left(3t+1\right)\\n=2\left(3t+2\right)\end{cases}}\)\(A=\orbr{\begin{cases}6t+5\\6t+7\end{cases}}\)\(A^2=\orbr{\begin{cases}36t^2+60t+25\\36t^2+84t+49\end{cases}}\)
\(B=\orbr{\begin{cases}2\left(36t^2+60t+25\right)+1=3n+51\\2\left(36t^2+84t+49\right)+1=3m+99\end{cases}}\)=> B chia hết cho 3
kết luận: n =0 là giá trị duy nhất thỏa mãn đề bài
xác định tập hợp P các số tự nhiên n để 27n3-45n2+24n-4 là số nguyên tố
Lời giải:
$A=27n^3-45n^2+24n-4=(3n-2)^2(3n-1)$
Để $A$ là số nguyên tố thì 1 trong 2 thừa số $3n-2$ hoặc $3n-1$ phải là $1$ và số còn lại là số nguyên tố.
Nếu $3n-2=1$ thì $n=1$. Khi đó: $A=1^2.2=2$ là số nguyên tố (tm)
Nếu $3n-1=1$ thì $n=\frac{2}{3}\not\in\mathbb{N}$ (loại)
Vậy $n=1$.
Bài 1:Cho p là một số nguyên tố lớn hơn 3 và p+8 là một số nguyên tố. Chứng tỏ p+10 phải là pợp số
Bài 2: Tìm số nguyên tố p sao cho p+2;p+4 cũng là các số nguyên tố
BÀi 11 Tìm tập hợp A các số tự nhiên n sao cho 20 thì chia hết cho n và 18 thì chia hết cho n+1
Có cả cách giả nữa nhé!!!!!!!!!!
tìm một số tự nhiên n sao cho
a) 2 mu n + 22 là một số nguyên tố
b ) 13n là một số nguyên tố
giải chi tiết ra giúp mình nhé
a) \(2^n+22\)
Với \(n\ge1\)thì \(2^n⋮2,22⋮2\)khi đó \(2^n+22⋮2\)mà \(2^n+22>2\)nên khi đó \(2^n+22\)là hợp số.
Với \(n=0\): \(2^n+22=23\)thỏa mãn.
Vậy \(n=0\).
b) \(13n\)
Với \(n\ge2\)thì \(13n⋮13\)mà \(13n>13\)nên là số hợp số.
\(n=1\)thỏa mãn.