Những câu hỏi liên quan
H24
Xem chi tiết
PT
Xem chi tiết
TA
21 tháng 3 2015 lúc 12:00

Ta có : 1/2.2 < 1/1.2
1/3.3 < 1/2.3
.

.

.

1/100.100<1/99.100

==> 1/2.2+1/3.3+...+1/100.100 < 1/1.2 + 1/2.3+....+1/99.100

=> A < 1-1/100

=> A<99/100<100/100=1

==> a<1

Bình luận (0)
VT
Xem chi tiết
TH
Xem chi tiết
LD
2 tháng 5 2016 lúc 10:30

1/2.2 < 1/1.2

1/3.3 < 1/2.3

..................

1/100.100 < 1/99.100 

=> <

Bình luận (0)
HP
2 tháng 5 2016 lúc 10:33

Ta có: \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{100.100}=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)

\(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}<\frac{1}{2.3}\)

\(\frac{1}{4^2}<\frac{1}{3.4}\)

.....

\(\frac{1}{100^2}<\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}<1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<1\left(đpcm\right)\)

Bình luận (0)
SH
2 tháng 5 2016 lúc 10:33

1/2.2 < 1/1.2

1/3.3 < 1/2.3

..................

1/100.100 < 1/99.100 

=> <

Bình luận (0)
NM
Xem chi tiết
NM
14 tháng 1 2024 lúc 21:34

rút gọn

Bình luận (0)
HM
Xem chi tiết
IY
8 tháng 9 2018 lúc 14:30

\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{99}{100}\cdot\frac{100}{101}\)

\(=\frac{1}{101}\)

#

Bình luận (0)
CN
8 tháng 9 2018 lúc 15:53

\(\frac{1}{2}\)\(\frac{2}{3}\)\(\frac{3}{4}\). ....... . \(\frac{99}{100}\)\(\frac{100}{101}\)

\(\frac{1.2.3........99.100}{2.3.4.......100.101}\)

= 1

Bình luận (0)
QA
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết