Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
Từ \(a+b+c=0\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(-c\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
Ta có a3 + b3 + c3 = 3abc
<=> (a + b)3 - 3ab(a + b) + c3 = 3abc
<=> (a + b + c)[(a + b)2 - (a + b)c + c2] - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + 2ab + b2 - ac - bc + c2 - 3ab) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> \(\orbr{\begin{cases}a+b+c=0\left(\text{tmđk}\right)\\a^2+b^2+c^2-ab-ac-bc=0\end{cases}}\)
Khi a2 + b2 + c2 - ab - ac - bc = 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (a2 - 2ac + c2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(\text{loại}\right)\)
Vậy a + b + c = 0
Cho a^2+b^2+c^2+3= 2(a+b+c). Chứng minh a=b=c=1
2. Chứng minh rằng nếu a+b+c=0 thì a^3+b^3+c^3=3abc
Chứng minh rằng nếu a3+b3+c3=3abc thì a=b=c hoặc a+b+c=0 ****
Chứng minh rằng nếu a3+b3+c3=3abc thì a=b=c hoặc a+b+c=0 ****
Chứng minh rằng : nếu \(a^3+b^3+c^3=3abc\) và a,b,c > 0 thì a=b=c
\(a^3+b^3+c^3=3abc\)\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\frac{\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]}{2}=0\)
Vì a,b,c > 0 nên a+b+c > 0
Do đó : \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow}a=b=c\)
1) có: a^3 + b^3 + c^3 - 3abc = 0
((a + b)3 + c^3( - 3ab(a + b) - 3abc = 0
<=>(a + b + c)((a + b)2 - (a + b).c + c2( - 3ab(a + b + c) = 0
<=>(a + b + c) (a2 + b2 + c2- ac - bc - ab( = 0
Từ đây cho nhận xét:
+ Nếu a + b + c = 0 có a3 + b3 + c3 = 3abc (I)
a + b + c = 0
+ Nếu a^3 + b^3 + c^3 = 3abc thì
a = b = c
Thực hiện phép tính (a+b)(a^2+b^2-c^2-ab-bc-ac) và chứng minh rằng nếu a^3+b^3+c^3=3abc thì a=b=c hoặc a+b+c +0
Chứng minh rằng nếu a3 + b3 + c3 = 3abc và a, b, c > 0 thì a = b = c.
Ta dùng cách chứng minh ngược :
Nếu \(a=b=c\) thì \(a^3=b^3=c^3=abc\)
\(\Rightarrow a^3+a^3+a^3=abc+abc+abc\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
Tnh:
\(^{(a^2+b^2+c^2-ab-bc-ca)\times(a+b+c)}\)và chứng minh rằng nếu a^3+B^3+c^3=3abc thì a=b=c hoặc a+b+c=0