Những câu hỏi liên quan
H24
Xem chi tiết
NC
31 tháng 12 2020 lúc 20:01

A =(a+b-2c) -(-a+b+c) -(2a-b-c)

   = a+b-2c+a-b-c-2a+b+c

   = b-2c

B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)

  = -2a+b-c+b-2c-3a+5a+3c-b

  = b-c

C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)

  = a-b-2c-2b-3c+a+2a-3b

  = -6b-5c

D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)

   = 5a-3b+c+2a-3b+5-b+c-a

   = 6a-7b+2c

Bình luận (0)
 Khách vãng lai đã xóa
NT
1 tháng 1 2021 lúc 15:36

\(A=\left(a+b-2c\right)-\left(-a+b+c\right)-\left(2a-b-c\right)\)

\(=a+b-2c+a-b-c-2a+b+c=b-2c\)

\(B=-\left(2a-b+c\right)+\left(b-2c-3a\right)-\left(-5a-3c+b\right)\)

\(=-2a+b-c+b-2c-3a+5a+3c-b=b\)

\(C=\left(3a-b-2c\right)-\left(2b+3c-a\right)+\left(2a-3b\right)\)

\(=3a-b-2c-2b-3c+a+2a-3b=6a-6b-5c\)

\(D=\left(5a-3b+c\right)+\left(2a-3b+5\right)-\left(b-c+a\right)\)

\(=5a-3b+c+2a-3b+5-b+c-a=6a-7b+2c\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NT
8 tháng 8 2023 lúc 8:09

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{2a}{2b}=\dfrac{3c}{3d}=\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

\(\Rightarrow\dfrac{2a+3c}{2a-3c}=\dfrac{2b+3d}{2b-3d}\)

\(\Rightarrow dpcm\)

Bình luận (0)
TN
Xem chi tiết
TN
Xem chi tiết
NT
17 tháng 2 2023 lúc 21:14

Chọn D

Bình luận (0)
NM
Xem chi tiết
H24
Xem chi tiết
TD
5 tháng 12 2019 lúc 22:22

3a+4b-3c=4Tìm GTNN của biểu thức : A = 2a+3b-4c? ... Cho a;b;c là các số không âm thỏa mãn:2a+b=6-3c;3a+4b=3c+4.Tìm min ... T = a −2 b 2 a − b +2 a −3 b 2 a + b. Đọc tiếp. ..... cho a và b là hai số thực thỏa mãn 4a + b = 5ab và 2a>b>0.

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
ZZ
4 tháng 4 2020 lúc 22:37

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó:

\(\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\)

\(\frac{2a+3c}{2a+3d}=\frac{2bk+3dk}{2a+3d}=\frac{k\left(2a+3d\right)}{2a+3d}=k\)

Vậy \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}=k\)

Ta có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
BN
Xem chi tiết
DM
Xem chi tiết
NT
4 tháng 2 2022 lúc 22:37

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\left(a+c\right)\cdot\left(b-d\right)=\left(bk+dk\right)\left(b-d\right)=k\left(b^2-d^2\right)\)

\(\left(a-c\right)\left(b+d\right)=\left(bk-dk\right)\left(b+d\right)=k\left(b^2-d^2\right)\)

Do đó: \(\left(a+c\right)\left(b-d\right)=\left(a-c\right)\left(b+d\right)\)

b: \(\left(2a+3c\right)\left(2b-3d\right)=\left(2bk+3dk\right)\left(2b-3d\right)=k\left(4b^2-9d^2\right)\)

\(\left(2a-3c\right)\left(2b+3d\right)=\left(2bk-3dk\right)\left(2b+3d\right)=k\left(4b^2-9d^2\right)\)

Do đó: \(\left(2a+3c\right)\left(2b-3d\right)=\left(2a-3c\right)\left(2b+3d\right)\)

Bình luận (0)
NP
Xem chi tiết
NT
18 tháng 1 2022 lúc 21:01

bạn ghi lại đề đi bạn

Bình luận (1)