Cho a > 2003; b > 2003 thỏa mãn: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2003}\)
Từ đó hãy tính giá trị của biểu thức sau: \(A=\frac{\sqrt{a+b}}{\sqrt{a-2003}+\sqrt{b-2003}}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A = 2004 x 2004 x ... x 2004 (A gồm 2003 thừa số) và B = 2003 x 2003 x ... x 2003 (B gồm 2004 thừa số).
Hãy cho biết A + B có chia hết cho 5 hay không? Vì sao?
A = (2004 x 2004 x ... x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004). C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x ... x 2003 (gồm 2004 thừa số) = (2003 x 2003 x 2003 x 2003) x ... x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501 (nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81).
Vậy tận cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
Cho A = 2004 x 2004 x ... x 2004 (A gồm 2003 thừa số) và B = 2003 x 2003 x ... x 2003 (B gồm 2004 thừa số). Hãy cho biết A + B có chia hết cho 5 hay không ? Vì sao ?
A = (2004 x 2004 x ... x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004). C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x ... x 2003 (gồm 2004 thừa số) = (2003 x 2003 x 2003 x 2003) x ... x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501 (nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
cho A = 2004 x 2004 x … x 2004 (A gồm 2003 thừa số) và B = 2003 x 2003 x … x 2003 (B gồm 2004 thừa số). Hãy cho biết A + B có chia hết cho 5 hay không ? Vì sao ?
Có 4 x 4 = 16
6 x 4 = 24
4 x 4 = 16.
Như vậy 2004 x 2004 x… X 2004 có tận cùng lặp đi lặp lại băng 6 ( nếu số số hạng là chẵn ), bằng 4 ( nếu số số hạng là lẻ ).
Vậy A có tận cùng là 4 vì có 2003 thừa số.
3 x 3 = 9
9 x 3 = 27
7 x 3 = 21
1 x 3 = 3
3 x 3 = 9.
Quy luật cũng lặp đi lặp lại. Với số số hạng là
2 – 3 – 4 – 5
6 – 7 – 8 – 9
( khoảng cách là 4)
2004 chia hết 4 nên trong 4 hiệu 2004 – 2, 2004 – 3, 2004 – 4, 2004 – 5 chỉ có 2004 – 4 chia hết cho 4.
Vậy B có tận cùng là 1.
(3x3x3x3 có tận cùng là 1).
A + B có tận cùng là 4 + 1 = 5.
Vậy A + B chia hết cho 5.
Nớ bảo ko lên mà vẫn lên à ? Sao nớ lại xóa kết bạn?
Cho A = 2004 x 2004 x ... x 2004 (A gồm 2003 thừa số) và B = 2003 x 2003 x ... x 2003 ( B gồm 2004 thừa số ) . Hãy cho biết A + B có chia hết cho 5 hay không ? Vì sao ?
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004).
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) = (2003 x 2003 x
2003 x 2003) x x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501
(nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng
của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận
cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004).
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) = (2003 x 2003 x
2003 x 2003) x x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501
(nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng
của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận
cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
Cho A = 2004 x 2004 x ... x 2004 (A gồm 2003 thừa số) và B = 2003 x 2003 x ... x 2003 (B gồm 2004 thừa số). Hãy cho biết A + B có chia hết cho 5 hay không? Vì sao?
A = (2004 x 2004 x ... x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004). C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x ... x 2003 (gồm 2004 thừa số) = (2003 x 2003 x 2003 x 2003) x ... x (2003 x 2003 x 2003 x 2003).
Vì 2004 : 4 = 501 (nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003.
Tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81).
Vậy tận cùng của A + B là 4 + 1 = 5.
Do đó A + B chia hết cho 5.
Cho A = 2004 x 2004 x ... x 2004 (A gồm 2003 thừa số) và B = 2003 x 2003 x ... x 2003 (B gồm 2004 thừa số). Hãy cho biết A + B có chia hết cho 5 hay không ? Vì sao ?
A = (2004 x 2004 x ... x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004). C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24). B = 2003 x 2003 x ... x 2003 (gồm 2004 thừa số) = (2003 x 2003 x 2003 x 2003) x ... x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501 (nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận cùng của A+B là 4+1=5 . do đó A+B chia hết cho 5
cho a;b;c;d thuộc Z thỏa mãn a+b=c+d và a^2+b^2=c^2+d^2
CM a^2003+b^2003=c^2003+d^2003
cho a;b;c;d thuộc Z thỏa mãn a+b=c+d và a^2+b^2=c^2+d^2
CM a^2003+b^2003=c^2003+d^2003
Cho các số nguyên a^1;a^2;..;a^2003 thỏa mãn a^1+a^2+...+a^2003=0; a^1+a^2=a^3+a^4=...=a^2001+a^2002=a^2003+a^1=1.Tính a^1, a^2003
Cho A = (20032003 + 20022003)2002
B = (20032002 + 20022002)2003
So sánh A và B.