LA

Cho a > 2003; b > 2003 thỏa mãn: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2003}\)

Từ đó hãy tính giá trị của biểu thức sau: \(A=\frac{\sqrt{a+b}}{\sqrt{a-2003}+\sqrt{b-2003}}\)

LA
27 tháng 12 2017 lúc 11:39

Mình đã tìm ra cách giải rồi, các bạn có thể góp ý để bài làm của mình hoàn thiện hơn nữa nha...

Ta có:\(\frac{1}{A}=\frac{\sqrt{a-2003}+\sqrt{b-2003}}{\sqrt{a+b}}=\frac{\sqrt{a-2003}}{\sqrt{a+b}}+\frac{\sqrt{b-2003}}{\sqrt{a+b}}\)

 Mặt khác:\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2003}\Rightarrow\frac{a+b}{ab}=\frac{1}{2003}\Rightarrow2003=\)\(\frac{ab}{a+b} \left(1\right)\)

Thay (1) vào \(\frac{1}{A}\) ta được: \(\frac{1}{A}=\frac{\sqrt{a-\frac{ab}{a+b}}}{\sqrt{a+b}}+\frac{\sqrt{b-\frac{ab}{a+b}}}{\sqrt{a+b}}\)

\(\Leftrightarrow\frac{1}{A}=\sqrt{\frac{a-\frac{ab}{a+b}}{a+b}}+\sqrt{\frac{b-\frac{ab}{a+b}}{a+b}}\)

\(\Leftrightarrow\frac{1}{A}=\sqrt{\frac{\frac{a^2+ab-ab}{a+b}}{a+b}}+\sqrt{\frac{\frac{b^2+ab-ab}{a+b}}{a+b}}=\sqrt{\frac{a^2}{\left(a+b\right)^2}}+\sqrt{\frac{b^2}{\left(a+b\right)^2}}\)

\(\Leftrightarrow\frac{1}{A}=\left|\frac{a}{a+b}\right|+\left|\frac{b}{a+b}\right|=\frac{a}{a+b}+\frac{b}{a+b}\left(a>2003;b>2003\right)\)

\(\Leftrightarrow\frac{1}{A}=\frac{a+b}{a+b}=1\Leftrightarrow A=1\)

Vậy............................

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
NL
Xem chi tiết
PT
Xem chi tiết
VN
Xem chi tiết
LK
Xem chi tiết
NN
Xem chi tiết
LH
Xem chi tiết
NV
Xem chi tiết
AV
Xem chi tiết