tìm giá trị nhỏ nhất hoặc lớn nhất
M=5/x^2+6
N=2/-x^2-7
P=7/-x^2-2x-15
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) S= \(\dfrac{3}{2x^2+2x+3}\)
b) T= \(\dfrac{5}{3x^2+4x+15}\)
c) V= \(\dfrac{1}{-x^2+2x-2}\)
d) X= \(\dfrac{2}{-4x^2+8x-5}\)
tìm giá trị nhỏ nhất hoặc giá trị lớn nhất
A=x^2-2x+2x+y^2-4y+7
B=5-x^2+2x-4y^2-4y
giúp mình với please^~^
Tìm Giá trị lớn nhất hoặc giá trị nhỏ nhất của
a. (x^2 + 1)/ x^2 + x + 1
b. (2x^2-5)/ x^2 - 2x + 3
c. (x+2)/(x^2+5)
Toán lớp 8 nha, mình nhầm
tìm giá trị lớn nhất hoặc nhỏ nhất
a)5-8x-x^2
b)x^2-2x+y^2-4y+7
c) (x-1)(x+2)(X+3)(X+6)
a) A=5+16-(x^2+8x+16)=21-(x+4)^2
Amax=21 khi x=-4
b)B=(x^2-2x+1)+(y^2-4y+4)+2=(x-1)^2+(y-2)^2+2
Bmin=2 khi x=1; y=2
c)C=(x-1)(x+2)(x+3)(x+6)=(x^2+5x-6)(x^2+5x+6)=(x^2+5x)^2-36
Cmin =-36 khi x=0
a)
gồm bình phường (a^2+2ab+b^2)=(a+b)^2 (*)
5-8x-x^2=-(x^2+8x-5) đây đâu trừ ra ngoài
(....) biến đổi cho giống biểu thức trên (*)
-(x^2+2.4.x+4^2) ....(ở đây a=x; b=4)
xong như vậy ta đã thêm 4^2=16 vào biểu thức mang dấu(-)
vậy ta công trả lại 16
-(x^2+2.4.x+4^2)+16+5 { còn 5 nguyên ban đầu )
=21-(x+4)^2
{x+4}^2 luôn dương=> -(x+4)^2 luon am
=> 21-(x+4)^2 \(\ge\)21
GTNN=21
câu c áp dụng (a^2-b^2)=(a-b)(a+b) (**)
\(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)t/c giao hoán phép nhân
\(\left[x^2+6x-x-6\right]\left[x^2+3x+2x+6\right]\)nhận phân phối
\(\left[x^2+5x-6\right]\left[x^2+5x+6\right]\)rút gọn binhf thường
\(\left[\left(x^2+5x\right)-6\right]\left[\left(x^2+5x\right)+6\right]\) ap dung ct (**) {a=(x^2+5x); b=6
\(\left(x^2+5x\right)^2-6^2\)
ok !!!!
Bài 1 Tính giá trị nhỏ nhất hoặc lớn nhất
A= |x+5| + 1
B= | 2x + 1|+ | -y- 5| - 2
C= ( 2x + 1 ) ^2 + |-y + 1 | + 11/2
D= -( x+1 )^2 - | y-1| - 3
Bài 2 Tính giá trị nhỏ nhất hoặc lớn nhất
A= | x + 1 | + | x + 7 | + | x + 20 | +| x- (-37)
B= | x - 10 | + | x - 3 | + | x - 5 |
C= | x - 1 | + | x - 5 |
Tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức sau
7/3 -|x|
|2x-7|+9
5-|3x+1|
2018+x^2
(x-9)^2 +2019
2020-(3x+5)^2
|x-7|+(3x+1)^2 +5
cho : -1 bé hơn hoặc=x , x bé hơn hoặc =3. tìm giá trị lớn nhất , nhỏ nhất.
p= 2x^2-x+5
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) S= 3/2x²+2x+3
b) T= 5/3x²+4x+15
c) V= 1/-x²+2x-2
d) X= 2/-4x²+8x+5
c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)
\(\Leftrightarrow V\ge-1\forall x\)
Dấu '=' xảy ra khi x=1
tìm giá trị nhỏ nhất của \(A=x^2-2x+5\)
tìm giá trị nhỏ nhất của \(B=2x^2-6x\)
tìm giá trị lớn nhất của \( C=4x-x^2+3\)
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)