Những câu hỏi liên quan
NH
Xem chi tiết
BH
12 tháng 11 2017 lúc 11:22
GTNN của A=1 <=>2< hoặc =x < hoặc =3
Bình luận (0)
NN
Xem chi tiết
H24
Xem chi tiết
NT
13 tháng 8 2023 lúc 10:41

a: =x^2-10x+25+y^2+2y+1

=(x-5)^2+(y+1)^2>=0

Dấu = xảy ra khi x=5 và y=-1

b: x^2-3x-2

=x^2-3x+9/4-17/4

=(x-3/2)^2-17/4>=-17/4

Dấu = xảy ra khi x=3/2

Bình luận (0)
RN
Xem chi tiết
NM
20 tháng 10 2021 lúc 9:18

\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

Vậy dấu \("="\) không xảy ra

Bình luận (0)
NC
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
TM
26 tháng 6 2023 lúc 10:40

Ta có : \(P=3A+2B\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{3}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+3}{\sqrt{x}+2}.\)

\(\Rightarrow P=\dfrac{2\left(\sqrt{x}+2\right)-1}{\sqrt{x}+2}=2-\dfrac{1}{\sqrt{x}+2}\)

Do \(x\ge0\Rightarrow\sqrt{x}+2\ge0\)

\(\Rightarrow-\dfrac{1}{\sqrt{x}+2}\ge-1\)

\(\Rightarrow P=2-\dfrac{1}{\sqrt{x}+2}\ge-1+2=1.\)

Vậy : \(MinP=1.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=0.\)

Bình luận (0)
VC
Xem chi tiết
NM
28 tháng 10 2021 lúc 14:35

Bài 8:

\(F=x^2-2x+1+x^2-6x+9=2x^2-8x+10\\ F=2\left(x^2-4x+4\right)+2=2\left(x-2\right)^2+2\ge2\\ F_{min}=2\Leftrightarrow x=2\)

Bình luận (0)
NM
28 tháng 10 2021 lúc 14:41

Bài 9:

\(A=-x^2+2x-1+5=-\left(x-1\right)^2+5\le5\\ A_{max}=5\Leftrightarrow x=1\\ B=-x^2+10x-25+2=-\left(x-5\right)^2+2\le2\\ B_{max}=2\Leftrightarrow x=5\\ C=-x^2+6x-9+9=-\left(x-3\right)^2+9\le9\\ C_{max}=9\Leftrightarrow x=3\)

Bình luận (0)
TM
Xem chi tiết
TA
18 tháng 7 2017 lúc 14:36

Tìm GTNN của :  \(x^2-4x+3\)

\(x^2-4x+3=x^2-4x+4-1=\left(x-2\right)^2-1\)

Vì  \(\left(x-2\right)^2\ge0\)  nên  \(\left(x-2\right)^2-1\ge-1\)

Vậy GTNN của biểu thức là -1 . Dấu bằng xảy ra khi x = 2

 2) \(\left(2x-1\right)\left(x+5\right)-3.\left(x-2\right)^2+\left(x+4\right)\left(x-4\right)\)

\(=2x^2+10x-x-5-3.\left(x^2-4x+4\right)+x^2-16\)

\(=2x^2+9x-5-3x^2+12x-12+x^2-16=21x-33\)

Khi x = -2 thì A = 21 . (-2) -33 = -75

Bình luận (0)
TM
18 tháng 7 2017 lúc 20:47

Cảm ơnb bạnnha

Bình luận (0)