Những câu hỏi liên quan
DL
Xem chi tiết
NT
8 tháng 8 2023 lúc 0:11

\(a^2=3b^2\)

Vì \(a^2;b^2\) là số chính phương

\(\Rightarrow a^2⋮̸3b^2\)

Nên không tồn tại a;b nguyên dương thỏa đẳng thức \(a^2=3b^2\)

Bình luận (0)
NT
8 tháng 8 2023 lúc 0:14

Phần lỗi màu đỏ là a2 không thể chia cho 3 có thương là b2 là số chính phương

Bình luận (0)
NH
Xem chi tiết
AH
29 tháng 12 2023 lúc 16:27

Lời giải:

$a^2-2ab-3b^2\geq 0$

$\Leftrightarrow (a^2+ab)-(3ab+3b^2)\geq 0$

$\Leftrightarrow a(a+b)-3b(a+b)\geq 0$

$\Leftrightarrow (a+b)(a-3b)\geq 0$

$\Leftrightarrow a-3b\geq 0$ (do $a+b>0$ với mọi $a,b>0$)

$\Leftrightarrow a\geq 3b$

Xét hiệu:

$P-\frac{37}{3}=\frac{4a^2+b^2}{ab}-\frac{37}{3}$

$=\frac{12a^2+3b^2-37ab}{3ab}=\frac{(a-3b)(12a-b)}{3ab}\geq 0$ do $a\geq 3b>0$

$\Rightarrow P\geq \frac{37}{3}$

Vậy $P_{\min}=\frac{37}{3}$

Bình luận (0)
TN
Xem chi tiết
NL
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 9 2018 lúc 8:09

Chọn B

Cách giải: Ta có:

log 2 x 2 + a 2 + log 2 x 2 + a 2 + log 2 x 2 + a 2 + . . . + log . . . 2 ⏝ n   c ă n x 2 + a 2 - 2 n + 1 - 1 log 2 x a + 1 = 0

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 3 2017 lúc 15:31

Bình luận (0)
NA
Xem chi tiết
NL
13 tháng 8 2021 lúc 1:19

Đặt \(P=\dfrac{a^3}{a^2+b^2+ab}+\dfrac{b^3}{b^2+c^2+bc}+\dfrac{c^3}{c^2+a^2+ca}\)

Ta có: \(\dfrac{a^3}{a^2+b^2+ab}=a-\dfrac{ab\left(a+b\right)}{a^2+b^2+ab}\ge a-\dfrac{ab\left(a+b\right)}{3\sqrt[3]{a^3b^3}}=a-\dfrac{a+b}{3}=\dfrac{2a-b}{3}\)

Tương tự: \(\dfrac{b^3}{b^2+c^2+bc}\ge\dfrac{2b-c}{3}\) ; \(\dfrac{c^3}{c^2+a^2+ca}\ge\dfrac{2c-a}{3}\)

Cộng vế:

\(P\ge\dfrac{a+b+c}{3}=673\)

Dấu "=" xảy ra khi \(a=b=c=673\)

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 5 2019 lúc 16:57

Bình luận (0)
PB
Xem chi tiết
CT
23 tháng 5 2017 lúc 2:53

Ta có:

Xét hàm số

 Hàm số f t  đồng biến trên 0 ; + ∞

 

 

 ta có:

 

Chọn: D

Bình luận (0)