So sánh:
\(\frac{4^{15}}{7^{30}}\)và \(\frac{8^{10}\times3^{30}}{7^{30}\times4^{15}}\)
So sánh:
\(\frac{4^{15}}{7^{30}}\)và \(\frac{8^{10}\times3^{30}}{7^{30}\times4^{15}}\)
Ta có:
\(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}=\left(\frac{2}{7}\right)^{30}\)
\(\frac{8^{10}x3^{30}}{7^{30}x4^{15}}=\frac{\left(2^3\right)^{10}x3^{30}}{7^{30}x\left(2^2\right)^{15}}=\frac{2^{30}x3^{30}}{7^{30}x2^{30}}=\frac{3^{30}}{7^{30}}=\left(\frac{3}{7}\right)^{30}\)
Nhận thấy, 2 số đều có cùng số mũ mà \(\frac{3}{7}>\frac{2}{7}\)
=> \(\frac{8^{10}x3^{30}}{7^{30}x4^{15}}>\frac{4^{15}}{7^{30}}\)
So sánh \(\frac{4^{15}}{7^{30}}\)và \(\frac{8^{10}\cdot3^{30}}{7^{30}\cdot4^{15}}\)
\(\frac{4^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\) và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{2^{30}}{7^{30}}\)Vậy hai vế bằng nhau
So sánh:
\(\frac{4^{15}}{7^{30}}VS\frac{8^{10}×3^{30}}{7^{30}×4^{15}}\)
so sánh: \(\frac{4^{15}}{7^{10}}\) và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
Ta có : \(\frac{4^{15}}{7^{10}}=\frac{\left(2^2\right)^{15}}{7^{10}}=\frac{2^{30}}{7^{10}}\)
\(\frac{8^{10}.3^{30}}{7^{30}.1^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}}=\frac{2^{30}.3^{30}}{7^{30}}=\frac{\left(2.3\right)^{30}}{7^{30}}=\frac{6^{30}}{7^{30}}\)
Mà : \(\frac{2^{30}}{7^{10}}=\frac{\left(2^3\right)^{10}}{7^{10}}=\frac{8^{10}}{7^{10}}\)
\(\frac{6^{30}}{7^{30}}=\frac{\left(6^3\right)^{10}}{\left(7^3\right)^{10}}=\frac{216^{10}}{343^{10}}\)
Vì : \(\frac{8}{7}>\frac{216}{343}\Rightarrow\frac{8^{10}}{7^{10}}>\frac{216^{10}}{343^{10}}\)
\(\Rightarrow\frac{4^{15}}{7^{10}}>\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
giúp mình vs
cho n là số tự nhiên
a, (n+ 10) (n+ 15) chia hết cho 2
b, n (n+ 1) (n+2) chia hết cho 2 và 3
c, n (n+ 1) (2n+1) chia hết cho 2 và 3
So sánh
a,\(25^{15}\)và \(8^{10}.3^{30}\)
b\(\frac{4^{15}}{7^{30}}\)và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
a) Ta có: \(25^{15}=\left(5^2\right)^{15}=5^{30}\)
\(8^{10}.3^{30}=\left(2^3\right)^{10}.3^{30}\)\(=2^{30}.3^{30}=6^{30}\)
Vì \(5^{30}< 6^{30}\)nên \(25^{15}< 8^{10}.3^{30}\)
b) Ta có: \(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)
\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)
Vì \(2^{30}< 3^{30}\)nên \(\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\)hay \(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
_Học tốt_
So sánh: \(\frac{4^{15}}{7^{30}}\)và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
Ai nhanh nhất, đúng nhất mk tick cho.
Ta có:
\(VT:\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)
\(VP:\frac{8^{10}\cdot3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)
Ta thấy :\(\frac{2^{30}}{7^{30}}vs\frac{3^{30}}{7^{30}}\)có:
\(\orbr{\begin{cases}2^{30}< 3^{30}\\7^{30}=7^{30}\end{cases}\Rightarrow\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\Leftrightarrow\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}}\)
Chúc bn hok tốt
1. So Sánh
a, \(25^{15}\)và \(8^{10}.3^{30}\)
b, \(\frac{4^{15}}{7^{30}}\) và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
a) 2515 và 810. 330
2515 = (52 ) 15 = 530
810. 330 = (23 )10. 330 = 230. 330 = 630
Vì 530< 630
nên 2515< 810. 330
b) \(\frac{4^{15}}{7^{30}}\)và \(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
\(\frac{4^{15}}{7^{30}}=\frac{\left(2^2\right)^{15}}{7^{30}}=\frac{2^{30}}{7^{30}}\)
\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{\left(2^3\right)^{10}.3^{30}}{7^{30}.\left(2^2\right)^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{3^{30}}{7^{30}}\)
Vì \(\frac{2^{30}}{7^{30}}< \frac{3^{30}}{7^{30}}\)
nên \(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
a)\(25^{15}=5^{2^{15}}=5^{30}\)
\(8^{10}.3^{30}=2^{3^{10}}.3^{30}=\left(2.3\right)^{30}=6^{30}\)
\(5^{30}< 6^{30}=>25^{15}< 8^{10}.3^{30}\)
b)\(\frac{4^{15}}{7^{30}}=\frac{2^{2^{15}}}{7^{30}}=\frac{2^{30}}{7^{30}}=\left(\frac{2}{7}\right)^{30}\)
\(\frac{8^{10}.3^{30}}{7^{30}.4^{15}}=\frac{2^{30}.3^{30}}{7^{30}.2^{30}}=\frac{6^{30}}{14^{30}}=\left(\frac{6}{14}\right)^{30}=\left(\frac{3}{7}\right)^{30}\)
Vì hai số có mũ bằng 30 nên ta so sánh :\(\frac{2}{7}< \frac{3}{7}\)
=>\(\frac{4^{15}}{7^{30}}< \frac{8^{10}.3^{30}}{7^{30}.4^{15}}\).
so sánh \(\frac{4^{15}}{7^{30}}\) và \(\frac{8^{10}.3^{10}}{7^{30}.4^{15}}\)
Ta có: \(\frac{4^{15}}{7^{30}}\)=\(\frac{\left(2^2\right)^{15}}{7^{30}}\)=\(\frac{2^{30}}{7^{30}}\)=\(\frac{\left(2^3\right)^{10}}{7^{30}}\)=\(\frac{8^{10}}{7^{30}}\)
\(\frac{8^{10}.3^{10}}{7^{30}.4^{15}}\)=\(\frac{\left(2^3\right)^{10}.3^{10}}{7^{30}.\left(2^2\right)^{15}}\)=\(\frac{2^{30}.3^{10}}{7^{30}.2^{30}}\)=\(\frac{3^{10}}{7^{30}}\)
Vì 810>310 \(\Rightarrow\)\(\frac{8^{10}}{7^{30}}\)>\(\frac{3^{10}}{7^{30}}\)
Hay \(\frac{4^{15}}{7^{30}}\)>\(\frac{8^{10}.3^{10}}{7^{30}.4^{15}}\)
so sánh: 4^15/7^30 và 8^10×3^10/7^30×15.
giúp mk nhé, cám ơn!!!!