Chứng minh rằng (2^2020 - 2^2017) chia hết cho 7
Chứng tỏ rằng:
\(2^{2020}-2^{2017}\) chia hết cho 7
\(=2^{2017}\left(2^3-1\right)=2^{2017}\times7⋮7\)
Ta có :
\(2^{2020}-2^{2017}=2^{2017}\cdot\left(2^3-1\right)=2^{2017}\cdot7\)
Vậy \(2^{2020}-2^{2017}\) chia hết cho 7
Chứng minh rằng :(22020-22017) chia hết cho 7
Giúp mk nha mk dang can lam ai nhanh va dung mk se cho 2 tick vi mk có 2 nick
22020-22017 = 23.22017 - 22017 = 22017.(23-1) = 22017.7 chia hết cho 7
Có : 2^2020 - 2^2017 = 2^2017.(2^3-1) = 2^2017.7 chia hết cho 7
k mk nha
ta có : 2^2020-2^2017
=2^2017 .(2^3-1)
=2^2017 .7 chia hết cho 7
Vậy (2^2020-2^2017)chia hết cho 7 (đpcm
chứng minh rằng
k là số mũ
10k +8k + 6k - 9k + 7k + 5k ko chia hết cho 2
b; 2017k +2018k +2019+ có chia hết cho 2
c; 2031 mũ 1111 - 2017 mũ 2020 có chia hết cho 10
chứng minh \
20182-1 chia hết cho 2017 và 2019
20203+1 chia hết cho 2021
20213-1 chia hết cho 2020
A=7^1+7^2+7^3+7^4+.....+7^2020
a) Thu gọn A
b) Chứng minh rằng 6a+7=7^2021
c) Chứng minh rằng Achia hết cho 8
d) Chứng minh rằng (a+7^2021) chia hết cho 8
e) so sánh 6a+7 với B=343^12345
1. Cho A = \(2^{2016}-1\) . Chứng minh rằng A chia hết cho 105.
2.Chứng minh rằng \(5^{2017}+7^{2015}\) chia hết cho 12.
3. Chứng minh rằng B = \(3^{2^{2n}}+10\) chia hết cho 13.
4. Chứng minh rằng C = \(3^{2^{4n+1}}+2^{3^{4n+1}}+5\) luôn chia hết cho 22.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
chứng minh
(2^2020-2^2017)chia hết cho bảy
AI LÀM NHANH MÌNH TICK CHO NHƯNG PHẢI ĐÚNG
Ta có:
2^2020 - 2^2017
= 2^2017. ( 2^3 - 1)
= 2^2017. ( 8 - 1 )
= 2^2017. 7 chia hết cho 7
Vậy ( 2^200 - 2^2017) chia hết cho 7
Ta có:
2^2020 - 2^2017
= 2^2017. ( 2^3 - 1)
= 2^2017. ( 8 - 1 )
= 2^2017. 7 chia hết cho 7
Vậy ( 2^200 - 2^2017) chia hết cho 7
tk cho mk nha $_$
:D
BẠN GIỎI QUÁ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho B 1.2.3.....2020.(1+1/2+1/3+........+1/2020) Chứng minh rằng B chia hết cho 2021.
Chứng minh rằng : \(2^{2020}-2^{2017}⋮7\)
\(2^{2020}-2^{2017}\)
\(=2^{2017}.2^3-2^{2017}\)
\(=2^{2017}\left(2^3-1\right)\)
\(=2^{2017}.7⋮7\)
\(\Rightarrow2^{2020}-2^{2017}⋮7\)
Vậy \(2^{2020}-2^{2017}⋮7\)