Những câu hỏi liên quan
TH
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
AH
10 tháng 8 2018 lúc 23:35

Bài 4:

\(x^4y-x^4+2x^3-2x^2+2x-y=1\)

\(\Leftrightarrow y(x^4-1)-(x^4-2x^3+2x^2-2x+1)=0\)

\(\Leftrightarrow y(x^2+1)(x^2-1)-[x^2(x^2-2x+1)+(x^2-2x+1)]=0\)

\(\Leftrightarrow y(x^2+1)(x-1)(x+1)-(x-1)^2(x^2+1)=0\)

\(\Leftrightarrow (x^2+1)(x-1)[y(x+1)-(x-1)]=0\)

\(\Rightarrow \left[\begin{matrix} x-1=0(1)\\ y(x+1)-(x-1)=0(2)\end{matrix}\right.\)

Với $(1)$ ta thu được $x=1$, và mọi $ý$ nguyên.

Với $(2)$

\(y(x+1)=x-1\Rightarrow y=\frac{x-1}{x+1}\in\mathbb{Z}\)

\(\Rightarrow x-1\vdots x+1\)

\(\Rightarrow x+1-2\vdots x+1\Rightarrow 2\vdots x+1\)

\(\Rightarrow x+1\in\left\{\pm 1; \pm 2\right\}\Rightarrow x\in\left\{-2; 0; -3; 1\right\}\)

\(\Rightarrow y\left\{3;-1; 2; 0\right\}\)

Vậy \((x,y)=(-2,3); (0; -1); (-3; 2); (1; t)\) với $t$ nào đó nguyên.

Bình luận (0)
AH
10 tháng 8 2018 lúc 22:52

Bài 1:

\(x^2+y^2-8x+3y=-18\)

\(\Leftrightarrow x^2+y^2-8x+3y+18=0\)

\(\Leftrightarrow (x^2-8x+16)+(y^2+3y+\frac{9}{4})=\frac{1}{4}\)

\(\Leftrightarrow (x-4)^2+(y+\frac{3}{2})^2=\frac{1}{4}\)

\(\Rightarrow (x-4)^2=\frac{1}{4}-(y+\frac{3}{2})^2\leq \frac{1}{4}<1\)

\(\Rightarrow -1< x-4< 1\Rightarrow 3< x< 5\)

\(x\in\mathbb{Z}\Rightarrow x=4\)

Thay vào pt ban đầu ta thu được \(y=-1\) or \(y=-2\)

Vậy.......

Bình luận (0)
AH
10 tháng 8 2018 lúc 23:10

Bài 2:

Ta có: \(x+y+xy=x^2+y^2\)

\(\Leftrightarrow 2x^2+2y^2=2x+2y+2xy\)

\(\Leftrightarrow 2x^2+2y^2-2x-2y-2xy=0\)

\(\Leftrightarrow (x^2-2xy+y^2)+(x^2-2x+1)+(y^2-2y+1)=2\)

\(\Leftrightarrow (x-y)^2+(x-1)^2+(y-1)^2=2(*)\)

\(\Rightarrow (y-1)^2\leq 2<4\Rightarrow -2< y-1< 2\)

\(\Rightarrow -1< y< 3\Rightarrow y\in\left\{0;1;2\right\}\)

Thay $y$ với các giá trị trên vào pt ban đầu ta thu được:

\(y=0\Rightarrow x=0, x=1\)

\(y=1\Rightarrow x=0; x=2\)

\(y=2\Rightarrow x=1;x=2\)

Bình luận (0)
LH
Xem chi tiết
H24
13 tháng 1 2017 lúc 16:12

a)

\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)

\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)

Bình luận (0)
TD
Xem chi tiết
NC
3 tháng 2 2020 lúc 15:58

Bạn kiểm tra lại đề bài nhé!

Bình luận (0)
 Khách vãng lai đã xóa
TD
4 tháng 2 2020 lúc 21:50

sửa 2(x^2-4x+3)y

Bình luận (0)
 Khách vãng lai đã xóa
KN
Xem chi tiết
TL
12 tháng 8 2020 lúc 22:52

khai triển và rút gọn 2 vế ta được x(x+1)=y4+2y3+3y2+2y

<=> x(x+1)=y2(y+1)2+2y(y+1)

<=> x2+x+1=(y2+y+1)2 (1)

nếu x>0 thì từ x2<x2+x+1<(x+1)2 => (1) không có nghiệm nguyên x>0

nếu x=0 hoặc x=-1 thì từ (1) => y2+y+1 = \(\pm\)\(\Leftrightarrow\hept{\begin{cases}y=0\\y=-1\end{cases}}\)

ta có nghiệm (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

nếu x<-1 thì từ (x+1)2<x2+x+1<x2

=> (1) không có nghiệm nguyên x<-1

tóm lại phương trình đã cho có 4 nghiệm nguyên (x;y)=(0;0);(0;-1);(-1;0);(-1;-1)

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
vu
Xem chi tiết