phân tích cái này hộ em với ạ
(x1^2+x2+m)(x2^2+x1+m)=m^2-m-1
Tìm tham số m để phương trình x2-2(m+1)x+m2=0
a,có 2 nghiệm phân biệt dương
b,có 2 nghiệm x1≠x2 thỏa mãn: (x1-m)+x2=3m
dạng này em chưa gặp giúp với :((
a. PT có 2 nghiệm phân biệt dương `<=> {(\Delta'=(m+1)^2-m^2>0),(S=2m+2>0),(P=m^2>0):} <=> {(m>-1/2),(m>-1),(forall m \ne 0):} <=> m>-1/2`
b. Viet: `{(x_1+x_2=2m+2),(x_1x_2=m^2):}`
Theo đề: `(x_1-m)+x_2=3m`
`<=> x_1-m+x_2=3m`
`<=>x_1+x_2=4m`
`<=> 2m+2=4m`
`<=>m=1` (TM)
Vậy `m=1`.
M.n giải hộ em bài này với ạ.
Cho phương trình x^2 -4x+m-1=0
a) tìm m để pt có 2nghiệm x1,x2 sao cho:
X1^3+x2^3=20x1×x2
b) tìm m để pt có 2 nghiệm x1 và x2 sao cho:
P=x1(x2-2)+x2(x1-2) đạt giá trị lớn nhất
Hết.
a: \(\text{Δ}=\left(-4\right)^2-4\left(m-1\right)=16-4m+4=-4m+20\)
Để phương trình có hai nghiệm thì -4m+20>=0
=>m<=5
Ta có: \(x_1^3+x_2^3=20x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=20x_1x_2\)
\(\Leftrightarrow4^3-3\cdot4\cdot\left(m-1\right)=20\left(m-1\right)\)
=>64-12(m-1)-20(m-1)=0
=>32(m-1)=64
=>m-1=2
=>m=3
b: \(P=x_1x_2-2x_1+x_2x_1-2x_2=2x_1x_2-2\left(x_1+x_2\right)\)
\(=2\left(m-1\right)-2\cdot4=2m-10\)
Biểu thức này ko có giá trị lớn nhất nha bạn
Cho phương trình: \(x^2-2x+m-3=0\). Tìm giá trị của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện: x1\(x^2_1-2x_2+x1.x2=-12\)
Mọi người ơi, giúp em bài này với ạ, em cảm ơn rất nhiều ạ!!!
Lời giải:
Để pt có 2 nghiê pb thì:
$\Delta'=1-(m-3)>0\Leftrightarrow m< 4$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-3\end{matrix}\right.\)
Khi đó:
\(x_1^2-2x_2+x_1x_2=-12\)
\(\Leftrightarrow x_1^2-2(2-x_1)+x_1(2-x_1)=-12\)
\(\Leftrightarrow x_1=-2\Leftrightarrow x_2=2-x_1=4\)
$m-3=x_1x_2=(-2).4=-8$
$\Leftrightarrow m=-5$ (tm)
Xác định các giá trị của m để phương trình x^2 -x+1-m =0 có hai nghiệm x1;x2 thỏa mãn đẳng thức \(5.\left(\dfrac{1}{x1}+\dfrac{1}{x2}\right)-x1.x2+4=0\)
Mọi người ơi, giúp em bài này với ạ, em cần rất gấp ạ, em cảm ơn rất nhiều ạ. (Nếu có thể giải chí tiết phần thay S và P vào đẳng thức được không ạ? Em cảm ơn rất nhiều ạ.)
\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)
Vậy $m=2$
Cho phương trình x2 +(m-3)x-2m+2=0: Tìm giá trị của m để:
a) Phương trình có 2 nghiệm x1,x2 thỏa 2x1+x2=3
b)Phương trình có 2 nghiệm x1,x2 thỏa /x1-x2/=2
giải hộ mình với ạ mình sắp đi học rùiii
Cho phương trình x2 - 2(m + 1)x + m - 4 = 0
a) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi m ( phần này không cần làm nhen)
Gọi x1 , x2 là 2 nghiệm của phương trình. d/ CMR biểu thức M = x1(1 - x2) + x2(1 - x1) không phụ thuộc vào m
b/ Ta có: x1 + x2 = 2m + 2
x1x2 = m - 4
M = x1(1 - x2) + x2(1 - x1) = x1 - x1x2 + x2 - x1x2 = (x1 + x2) - 2x1x2 = (2m + 2) - 2.(m - 4) = 10
Vậy không phụ thuộc vào m
Tìm điều kiện của tham số m để đt y = 2mx - 4m +3 (p) cắt (p) tại 2 điểm phân biệt có hoành độ lớn hơn 1
b) tìm m để Pt : mx^2 + 2 (m-2)x + m - 3 =0 có 2 nghiệm x1,x2 sao cho x1/x2 + x2/x1 =3
c) Tìm m để Pt : x^2 -2mx + m^2 -m =0 có 2 nghiệm x1,x2 thoả : x1^2 + x2^2 = 3x1x2
Giúp mình với ạ!!! Mình cảm ơn rất nhiều
Câu c) mình sai rồi nên hãy giúp mình câu a và b thôi
Cho phương trình x^2 - mx +m -1 =0 với m là tham số tìm m để phương trình có hai nghiệm phân biệt x1 x2 thỏa mãn:
a) x1 - x2 = 5
b) 1/x1 +1/x2-2 =1/2
c) |x1|=2|x2|
a: \(\text{Δ}=\left(-m\right)^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
để phương trình có hai nghiệm phân biệt thì m-2<>0
hay m<>2
Theo đề, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1-x_2=5\\x_1x_2=m-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x_1=m+5\\x_2=x_1-5\\x_1x_2=m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+5}{2}\\x_2=\dfrac{m+5}{2}-5=\dfrac{m-5}{2}\\x_1x_2=m-1\end{matrix}\right.\)
\(\Leftrightarrow m^2-25=4m-4\)
\(\Leftrightarrow m^2-4m-21=0\)
=>(m-7)(m+3)=0
=>m=7 hoặc m=-3
Cho phương trình : x² - 2(m-3) x + m² +3 = 0.Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thoã mãn x1² + x2² = 86
Làm ơn giải chi tiết giúp từng bước giúp e với, e thật sự kh hiểu bài này, đây là bài thi ạ 🥺
Δ=(2m-6)^2-4(m^2+3)
=4m^2-24m+36-4m^2-12=-24m+24
Để phương trình có hai nghiệm phân biệt thì -24m+24>0
=>m<1
x1^2+x2^2=36
=>(x1+x2)^2-2x1x2=36
=>(2m-6)^2-2(m^2+3)=36
=>4m^2-24m+36-2m^2-6-36=0
=>2m^2-24m-6=0
=>m^2-12m-3=0
=>\(m=6-\sqrt{39}\)