Những câu hỏi liên quan
HL
Xem chi tiết
NT
Xem chi tiết
NM
Xem chi tiết
NT
19 tháng 3 2017 lúc 14:53

hờ 5p tui giúp

Bình luận (0)
NA
19 tháng 3 2017 lúc 14:56

chắc là ko cứu dc rồi!!!!!!

Bình luận (0)
NT
19 tháng 3 2017 lúc 15:00

ngày mai tôi giúp

Bình luận (0)
Xem chi tiết
LL
25 tháng 9 2021 lúc 16:23

1)

a) \(=3x^2\left(x^2-1\right)-\left(x^3-1\right)+x^8-3x^4+3x^2-1\)

\(=3x^4-3x^2-x^3+1+x^8-3x^4+3x^2-1=x^8-x^3\)

2) 

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-6\left(x^2+5x\right)+45\)

\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)-36+45\)

\(=\left(x^2+5x\right)^2-6\left(x^2+5x\right)+9=\left(x^2+5x-3\right)^2\)

Bình luận (0)
DD
Xem chi tiết
Xem chi tiết
PH
30 tháng 10 2018 lúc 22:44

\(ƯCLN\left(x;y\right)=\frac{xy}{BCNN\left(x;y\right)}=\frac{20}{10}=2\)

Đặt \(x=2k,y=2t\) (y và t là 2 số nguyên tố cùng nhau)

\(xy=20\Rightarrow2k.2t=20\Rightarrow k.t=5\)

\(\Rightarrow k\inƯ\left(5\right)=\left\{1;5\right\}\)

\(\Rightarrow x=2k\in\left\{2;10\right\}\)

Nếu x = 2 thì y = 10

Nếu x = 10 thì y = 2

Vậy x = 2 và y = 10 hoặc x = 10 và y = 2

Bình luận (0)
TT
Xem chi tiết
NJ
11 tháng 2 2018 lúc 14:10

1.

a,  \(x-14=3x+18\)                                                                       

\(\Rightarrow x-3x=18+14\)                                                                 

\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)

b, \(\left(x+7\right).\left(x-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)

c, \(\left|2x-5\right|-7=22\)                                                                     

\(\Rightarrow\left|2x-5\right|=22+7\)

\(\Rightarrow\left|2x-5\right|=29\)

\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)

d,  \(\left(\left|2x\right|-5\right)-7=22\)

\(\Rightarrow\left(\left|2x\right|-5\right)=29\)

\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)

e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)

Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)

Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)

\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)

     \(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)

      \(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)

Ta có : 

\(x+3+x+9+x+5=4x\)

\(\Rightarrow3x+\left(3+9+5\right)=4x\)

\(\Rightarrow4x-3x=17\)

\(\Rightarrow x=17\)

2. a , b sai đề bn 

c, \(\left(5x+1\right).\left(y-1\right)=4\)

\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)

\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Ta có bảng sau : 

5x+11-12-24-4
y-1-44-22-11
x0-2/51/5-3/53/5-1
y-35-1302

d, \(5xy-5x+y=5\)

\(\Rightarrow\left(5xy-5x\right)+y=5\)

\(\Rightarrow5x.\left(y-1\right)+y=5\)

\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)

\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)

\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Ta có bảng sau : 

5x+11-12-24-4
y-1-44-22-11
x0-21/5-3/53/5-1
y-35-1302



 

Bình luận (0)
H24
15 tháng 4 2019 lúc 19:36

x - 14 = 3x + 18

x - 3x = 18 + 14

-2x= 32

x= 32 : (-2)

x=-16

Bình luận (0)
BD
Xem chi tiết
NT
14 tháng 8 2016 lúc 20:33

tìm x,y,z 5x=2y , 2x=3z và x.y=90

\(\frac{x}{2}=\frac{y}{5}=\frac{x}{3}=\frac{z}{2}\)và \(x.y=90\)

\(\Leftrightarrow\frac{x}{2}=\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)

\(\Rightarrow\frac{x}{6}=\frac{y}{5}=\frac{z}{2}=\frac{x.y}{6.5}=\frac{90}{30}=3\)

\(\Rightarrow\frac{x}{6}=3\Rightarrow3.6=18\)

\(\frac{y}{5}=3\Rightarrow y=3.5=15\)

\(\frac{z}{2}=3\Rightarrow z=3.2=6\)

Vây x = 18 y = 15  z = 6

k nha ^-^

Bình luận (0)
TT
Xem chi tiết
NT
12 tháng 3 2020 lúc 12:36

a) \(\left(x-7\right)\left(x+12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-12\end{matrix}\right.\)

Vậy: x∈{7;-12}

b) \(\left(3x-15\right)\left(6-2x\right)=0\)

\(3\left(x-5\right)\cdot2\cdot\left(3-x\right)=0\)

hay \(6\left(x-5\right)\left(3-x\right)=0\)

Vì 6≠0

nên \(\left[{}\begin{matrix}x-5=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)

Vậy: x∈{3;5}

c) \(\left(3x+9\right)\left(4y-8\right)=0\)

\(3\left(x+3\right)\cdot4\left(y-2\right)=0\)

hay \(12\left(x+3\right)\left(y-2\right)=0\)

Vì 12≠0

nên \(\left\{{}\begin{matrix}x+3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)

Vậy: x=-3 và y=2

d) \(\left(2y-16\right)\left(8x-24\right)=0\)

\(2\left(y-8\right)\cdot8\left(x-3\right)=0\)

hay 16(y-8)(x-3)=0

Vì 16≠0

nên \(\left\{{}\begin{matrix}y-8=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=3\end{matrix}\right.\)

Vậy: y=8 và x=3

e) \(\left(22-11y\right)\left(9x-18\right)=0\)

\(11\left(2-y\right)9\left(x-2\right)=0\)

hay 99(2-y)(x-2)=0

Vì 99≠0

nên \(\left\{{}\begin{matrix}2-y=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=2\end{matrix}\right.\)

Vậy: x=2 và y=2

g) \(\left(7y+14\right)\cdot\left(9x-18\right)=0\)

⇔7(y+2)*9(x-2)=0

hay 63(y+2)(x-2)=0

Vì 63≠0

nên \(\left\{{}\begin{matrix}y+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\x=2\end{matrix}\right.\)

Vậy: y=-2 và x=2

h) xy=3

⇒x,y∈Ư(3)

⇒x,y∈{1;-1;3;-3}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

*Trường hợp 3:

\(\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\)

*Trường hợp 4:

\(\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)

Vậy: x∈{1;-1;3;-3} và y∈{1;-1;3;-3}

i) x*y=-5

⇔x,y∈Ư(-5)

⇔x,y∈{1;-1;5;-5}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x=-1\\y=5\end{matrix}\right.\)

*Trường hợp 3:

\(\left\{{}\begin{matrix}x=-5\\y=1\end{matrix}\right.\)

*Trường hợp 4:

\(\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)

Vậy: x∈{1;5;-1;-5} và y∈{1;5;-1;-5}

k) \(\left(x+4\right)\left(y-5\right)=-3\)

⇔x+4; y-5∈Ư(-3)

⇔x+4; y-5∈{1;3;-3;-1}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x+4=-1\\y-5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=8\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x+4=1\\y-5=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)

*Trường hợp 3:

\(\left\{{}\begin{matrix}x+4=3\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

*Trường hợp 4:

\(\left\{{}\begin{matrix}x+4=-3\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=6\end{matrix}\right.\)

Vậy: x∈{-5;-3;-1;-7} và y∈{8;2;4;6}

m) (x-9)(y-5)=-1

⇔x-9; y-5∈Ư(-1)

⇔x-9; y-5∈{1;-1}

*Trường hợp 1:

\(\left\{{}\begin{matrix}x-9=1\\y-5=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=4\end{matrix}\right.\)

*Trường hợp 2:

\(\left\{{}\begin{matrix}x-9=-1\\y-5=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)

Vậy: x∈{10;8} và y∈{4;6}

n) x+3⋮x+4

⇔x+4-1⋮x+4

⇔-1⋮x+4

hay x+4∈Ư(-1)

⇔x+4∈{1;-1}

⇔x∈{-3;-5}

Vậy: x∈{-3;-5}

p)(x-5)⋮x+2

⇔x+2-7⋮x+2

hay -7⋮x+2

⇔x+2∈Ư(-7)

⇔x+2∈{1;-1;7;-7}

hay x∈{-1;-3;5;-9}

Vậy: x∈{-1;-3;5;-9}

Bình luận (0)
 Khách vãng lai đã xóa