Tìm đa thức A biết rằng :
\(\frac{2x+4}{x^2+2x}=\frac{A}{x}\)ai biết phụ tớ nhá
tìm đa thức A , biết
\(\frac{4x^2}{x^2+2x}=\frac{A}{x}\)
\(\frac{4x^2}{x^2+2x}=\frac{A}{x}\)\(\Rightarrow\frac{x\cdot4x}{x\left(x+2\right)}=\frac{A}{x}\)
\(\Rightarrow\frac{4x}{x+2}=\frac{A}{x}\Rightarrow4x^2=A\left(x+2\right)\)\(\Rightarrow A=\frac{4x^2}{x+2}\)
đề đúng này hả /hoi-dap/question/139801.html nick kia giải r` kia
tìm đa thức A , biết
\(\frac{4x^2-16}{x^2+2x}=\frac{A}{x}\)
\(\frac{4x^2-16}{x^2+2x}=\frac{A}{x}\)\(\Leftrightarrow\frac{4\left(x^2-4\right)}{x\left(x+2\right)}=\frac{A}{x}\)
\(\Leftrightarrow\frac{4\left(x+2\right)\left(x-2\right)}{x\left(x+2\right)}=\frac{A}{x}\)\(\Leftrightarrow\frac{4\left(x-2\right)}{x}=\frac{A}{x}\)
\(\Leftrightarrow4\left(x-2\right)=A\Leftrightarrow A=4x-8\)
cho biểu thức: [\(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\)]x \(\frac{4x^2-4}{5}\)
a, tìm điều kiện của x để giá trị của biểu thức được xác định?
b,chứng minh rằng: khi giá trị của biểu thức ko bị phụ thuộc vào giá trị của biến x?
Ai giúp mk với!
Tìm đa thức A biết: \(\frac{4x^2-16}{x^2+2x}=\frac{A}{x}\)
Cho đa thức : \(A=-4x^5y^3+x^4y^3.3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4\)
Tìm đa thức B biết rằng :
\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
\(B-2x^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
\(\Rightarrow B=A+2x^2y^3-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(\Rightarrow B=-4x^5y^3+x^4y^3\cdot3x^2y^3z^2+4x^5y^3+x^2y^3z^2-2y^4+2x^2y^3z^2-\frac{2}{3}y^4+\frac{1}{5}x^4y^3\)
\(=\left(-4x^5y^3+4x^5y^3\right)+\left(x^2y^3z^2+2x^2y^3z^2\right)+x^4y^3\cdot3x^2y^3z^2-\left(2y^4+\frac{2}{3}y^4\right)-\frac{1}{5}x^4y^3\)
\(=3x^2y^3z^2+x^4y^3\cdot3x^2y^3z^2-\frac{8}{6}y^4-\frac{1}{5}x^4y^3\)
Tìm hệ số a của đa thức: P( x ) = ax2 + 2x + 1 biết rằng P(\(\frac{1}{2}\)) = 1
P(x) = ax2 + 2x + 1
P(1/2) = 1 <=> a . (1/2)2 + 2 . 1/2 + 1 = 1
<=> a . 1/4 + 1 + 1 = 1
<=> a . 1/4 = -1
<=> a = -4
Ta có : \(P\left(x\right)=ax+2x+1\)
\(P\left(\frac{1}{2}\right)=a.\left(\frac{1}{2}\right)^2+2\left(\frac{1}{2}\right)+1=1\)
\(\frac{a}{4}+1=0\Leftrightarrow\frac{a}{4}=-1\Leftrightarrow a=-4\)
Ta có : \(P\left(x\right)=ax+2x+1\)
\(P\left(\frac{1}{2}\right)=a.\left(\frac{1}{2}\right)^2+2\left(\frac{1}{2}\right)+1=1\)
\(\frac{a}{4}+1=0\Leftrightarrow\frac{a}{4}=-1\Leftrightarrow a=-4\)
cho biểu thức
A= \(\left(\frac{3}{2x+4}+\frac{x}{2-x}+\frac{2x^2+3}{x^2-4}\right)\div\frac{2x-1}{4x-8}\)
a) tìm ĐKXĐ và rút gọn A
b) tính giá trị biểu thức biết /x-1/ =3
c) tìm x để A<2
d) tìm x để /A/=1
a) ĐKXĐ: \(x\ne-2;x\ne2\), rút gọn:
\(A=\left[\frac{3\left(x-2\right)-2x\left(x+2\right)+2\left(2x^2+3\right)}{2\left(x-2\right)\left(x+2\right)}\right]\div\frac{2x-1}{4\left(x-2\right)}\)
\(A=\frac{3x-6-2x^2-4x+4x^2+6}{2\left(x-2\right)\left(x+2\right)}\cdot\frac{4\left(x-2\right)}{2x-1}=\frac{4\left(2x^2-x\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4x\left(2x-1\right)}{x\left(x+2\right)\left(2x-1\right)}=\frac{4}{x+2}\)
b) Ta có: \(\left|x-1\right|=3\Leftrightarrow\hept{\begin{cases}x-1=3\\x-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\left(n\right)\\x=-2\left(l\right)\end{cases}}}\)
=> Khi \(x=4\)thì \(A=\frac{4}{4+2}=\frac{4}{6}=\frac{2}{3}\)
c) \(A< 2\Leftrightarrow\frac{4}{x+2}< 2\Leftrightarrow4< 2x+4\Leftrightarrow0< 2x\Leftrightarrow x>0\)Vậy \(A< 2,\forall x>0\)
d) \(\left|A\right|=1\Leftrightarrow\left|\frac{4}{x+2}\right|=1\Leftrightarrow\hept{\begin{cases}\frac{4}{x+2}=1\\\frac{4}{x+2}=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\left(l\right)\\x=-6\left(n\right)\end{cases}}}\)Vậy \(\left|A\right|=1\)khi và chỉ khi x = -6
giúp với ạ
cho đa thức :A(x)=x^4-4x^3+2x^2-5x+6.
a, tính giá trị đa thức A(x) biết |4x-1|=1 .
b, tìm đa thức B(x) biết : a(x) -b(x) = 3x^2-x-3x^3-x^2+x^4-2x^2+6 .
c, tìm nghiêm đa thức B(x)
Cho biểu thức P=\(\left[\frac{1}{x-2}-\frac{x+1}{x^2+2x+4}-\frac{3}{x^3-8}\right]:\frac{x^2-4}{x^2+2x+4}\)
a) Tìm ĐKXĐ của P
b) Rút gọn P
c) Tìm x để P nhận giá trị dương
Ai biết giúp mk giải câu c) nha! Cảm ơn trước.