Đẻ A là 1 số nguyên thì 21n+3 chia hết cho 6n+4
a)A rút gọn đc
b) A là 1 số nguyên
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Cho biểu thức A=(-a-b+c)-(-a-b-c). Hãy rút gọn biểu thức A
2.Tìm tất cả các số nguyên a biết (6a+1) chia hết cho (3a-1)
3.Tìm số nguyên a,b biết a>0 và a(b-2)=3
4.Chứng minh rằng nếu 2 số a,b là 2 số nguyên khác 0 và a là bội của b;b là bội của a thì a=b hoặc a=-b
bài 5 : Cho : A=n^6=10n^4+n^3+98n-6n^5-26 và B=1-n+n^3 . CMr với n nguyên thì thương của phép chia A cho B là bội của 6
bài 6 : CM với mọi số nguyên a ta đếu có : a^3+5a là số nguyên chia hết cho 6
Bài 15. Cho phân số A= 2n+ 3 / 6n +4 (n thuộc N) . Với giá trị nào của n thì A rút gọn được.
Bài 16. Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên
A) 12/3n-1
b)2n+3/7
c)2n+5 / n-3
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
Cho A=n^6+10n^4+n^3+98n-6n^5-26
B=n^3-n+1
a,Chứng minh với mọi số nguyên n thì thương chủa A:B là bội của 6
b,tìm số nguyên n để A chia hết cho B
a) Chứng minh rằng với mọi số tự nhiên n thì phân số 21n+4/14n+3 là phân số tối giản
b) Tìm tất cả các số tự nhiên n để phân số n+3/n-12 là phân số tối giản
c) Tìm các số tự nhiên n để phân số 21n+3/6n+4 rút gọn được
a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1
Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d
=> (14n+3) -(21n+4) \(⋮\)d
=> 3(14n+3) -2(21n+4) \(⋮\)d
=> 42n+9 - 42n -8 \(⋮\)d
=> 1\(⋮\)d
=> 21n+4/14n+3 là phân số tối giản
Vậy...
c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d
=> (6n+4) - (21n+3) \(⋮\)d
=> 7(6n+4) - 2(21n+3) \(⋮\)d
=> 42n +28 - 42n -6\(⋮\)d
=> 22 \(⋮\)cho số nguyên tố d
d \(\in\){11;2}
Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11
Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ
Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11
Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được
tìm các số nguyên n để biểu thức sau là phân số, là số nguyên
A=21n+3/6n+4
a) Tìm tất cả các số nguyên n sao cho A = \(\dfrac{1-6n}{2n-3}\) là một số nguyên
b) Cho các phân số: \(\dfrac{ab}{a+2b}=\dfrac{3}{2},\dfrac{bc}{b+2c}=\dfrac{4}{3},\dfrac{ca}{c+2a}=3\)
Rút gọn phân số T = \(\dfrac{abc}{ab+bc+ca}\)
\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)
\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)
Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)
\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)
a) Chứng minh rằng với mọi số tự nhiên n chẵn thì: (n4 -4n3 -4n2 +16n)chia hết cho 384;
b) với n là số nguyên dương, rút gọn:
A=(1+1/3)(1+1/8)(1+1/15)....(1+1/(n2+2n))
Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Câu 1 : Cho biểu thức :
A= a^3+2a^2-1/ a^3+2a^2+2a+1
a/ Rút gọn biểu thức
B/ CMR nếu a là số nguyên âm thì giá trị biểu thức tìm đc của câu a là 1 phân số tối giản
Cái đề này không rõ nhé bạn! Bạn ghi lại đề bằng fx nhé
Có đầy câu hỏi tương tự đáy bạn lên các câu hỏi đó mà xem