HL

Đẻ A là 1 số nguyên thì 21n+3 chia hết cho 6n+4 

a)A rút gọn đc 

b) A là 1 số nguyên

DH
25 tháng 5 2021 lúc 17:35

a) Đặt \(d=\left(21n+3,6n+4\right)\).

\(\Rightarrow\hept{\begin{cases}21n+3⋮d\\6n+4⋮d\end{cases}}\Rightarrow7\left(6n+4\right)-2\left(21n+3\right)=22⋮d\)

\(\Rightarrow d\in\left\{22,11,2,1\right\}\).

Ta sẽ tìm điều kiện để \(\hept{\begin{cases}21n+3⋮2\\6n+4⋮2\end{cases}}\)và \(\hept{\begin{cases}21n+3⋮11\\6n+4⋮11\end{cases}}\)

\(\hept{\begin{cases}21n+3⋮2\\6n+4⋮2\end{cases}}\)suy ra \(n\)lẻ. 

\(\hept{\begin{cases}21n+3⋮11\\6n+4⋮11\end{cases}}\)suy ra \(21n+3=22n-n+3⋮11\Leftrightarrow n+8⋮11\Leftrightarrow n=11k-8\left(k\inℤ\right)\).

Với \(n=11k-8\)thì \(6n+4=66k-44⋮11\).

Vậy \(A\)rút gọn được khi \(n\)lẻ hoặc \(n=11k-8\left(k\inℤ\right)\).

b) \(\frac{21n+3}{6n+4}\inℤ\Rightarrow\frac{2\left(21n+3\right)}{6n+4}=\frac{42n+6}{6n+4}=7-\frac{22}{6n+4}\inℤ\Leftrightarrow\frac{22}{6n+4}\inℤ\)

\(\Leftrightarrow6n+4\inƯ\left(22\right)=\left\{-22,-11,-2,-1,1,2,11,22\right\}\)

mà \(n\inℤ\)nên \(n\in\left\{-1,3\right\}\)

Thử lại đều thỏa mãn. 

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HL
Xem chi tiết
NA
Xem chi tiết
BS
Xem chi tiết
H24
Xem chi tiết
GK
Xem chi tiết
KG
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết