Những câu hỏi liên quan
TM
Xem chi tiết
TH
10 tháng 1 2021 lúc 11:59

Rõ ràng đa thức \(x^3-1\) chia hết cho đa thức \(x^2+x+1\).

Ta tách: \(x^9+x^6+x^3+1=\left(x^9-1\right)+\left(x^6-1\right)+\left(x^3-1\right)+4=\left(x^3-1\right)\left(x^6+x^3+1\right)+\left(x^3-1\right)\left(x^3+1\right)+\left(x^3-1\right)+4\).

Từ đây suy ra đa thức đó chia cho đa thức \(x^2+x+1\) được đa thức dư là 4.

Bình luận (0)
H24
10 tháng 1 2021 lúc 11:44

Không chia có mà làm=niềm tin ah

 

Bình luận (0)
NQ
Xem chi tiết
H24
23 tháng 8 2023 lúc 20:04

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

Bình luận (0)
ND
Xem chi tiết
ND
Xem chi tiết
LP
4 tháng 10 2023 lúc 16:42

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)

 

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 3 2017 lúc 9:18

Ta có đa thức  x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 chưa (x + 1) nên phần dư là một hằng số

Gọi thương là Q(x) và dư r. Khi đó với mọi x ta có

x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1   = Q(x)(x + 1) + r           (1)

Thay x = -1 vào (1) ta được

( ( - 1 ) 2   +   3 . ( - 1 )   +   2 ) 5   +   ( ( - 1 ) 2   –   4 ( - 1 )   –   4 ) 5 – 1 = Q(x).(-1 + 1) + r

r = 0 5   +   1 5 – 1 ó r = 0

vậy phần dư của phép chia là r = 0. 

đáp án cần chọn là: C

Bình luận (0)
H24
Xem chi tiết
NT
13 tháng 7 2023 lúc 20:06

\(\dfrac{f\left(x\right)}{2x+1}=\dfrac{\left(2x+1\right)\left(x^2-x+1\right)}{2x+1}=x^2-x+1\)

Bình luận (1)
NV
13 tháng 7 2023 lúc 20:09

Chọn C:  

\(\dfrac{\left(2x+1\right)\left(x^2-x+1\right)}{2x+1}=x^2-x+1\)

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 11 2019 lúc 14:39

a) A = ( x 2 – 6x)B.

b) A = (-x – 8)B + 2

c) A = (x + 3)B + 6.

Bình luận (0)
T8
Xem chi tiết
NT
22 tháng 12 2021 lúc 11:17

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

Bình luận (0)
HS
Xem chi tiết
NT
29 tháng 10 2021 lúc 22:02

Bài 1:

Ta có: \(5x^3-3x^2+2x+a⋮x+1\)

\(\Leftrightarrow5x^3+5x^2-8x^2-8x+10x+10+a-10⋮x+1\)

\(\Leftrightarrow a-10=0\)

hay a=10

Bình luận (0)