Những câu hỏi liên quan
BA
Xem chi tiết
TM
Xem chi tiết
PQ
9 tháng 10 2019 lúc 13:14

\(7.5^{2n}+12.6^n=7.5^{2n}+19.6^n-7.6^n\)

\(=7\left(5^{2n}-6^n\right)+19.6^n=7.\left(25^n-6^n\right)+19.6^n\)

\(=7.19.A\left(x\right)+19.6^n\)⋮ 19

Bình luận (0)
TT
Xem chi tiết
AC
Xem chi tiết
NU
Xem chi tiết
LT
5 tháng 3 2018 lúc 18:35

Vì 25 đồng dư với 6 (mod19) nên 25n đồng dư với 6n (mod19)

Suy ra: 7.52n+12.6n=7.25n+12.6n đồng dư với 7.6n+12.6n (mod19)

Mà 7.6n+12.6n=19.6n đồng dư với 0 (mod19)

Suy ra: 7.52n+12.6n đồng dư với 0 (mod19) 

=> đpcm

Bình luận (0)
HN
Xem chi tiết
NH
26 tháng 7 2020 lúc 13:55

a, 7 . 52n + 12 . 6n 

= 7 . (52)n - 7 . 6n + 19 . 6n

= 7 . (25n - 6n) + 19 . 6n

= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n

= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n

Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19

=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19

=> 7 . 52n + 12 . 6n ⋮ 19

b, 11n + 2 + 122n + 1 

= 121 . 11n + 144n . 12

= 133 . 11n - 12 . 11+ 144n . 12

= 133 . 11n + 12(144n - 11n

= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)

= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)

Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133

=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133

=> 11n + 2 + 122n + 1 ⋮ 133

Bình luận (0)
 Khách vãng lai đã xóa
H24
18 tháng 9 2020 lúc 18:54

          Bài làm :

a) 7 . 52n + 12 . 6n 

= 7 . (52)n - 7 . 6n + 19 . 6n

= 7 . (25n - 6n) + 19 . 6n

= 7 . (25 - 6) . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n

= 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n

Vì 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) ⋮ 19 và 19 . 6n ⋮ 19

=> 7 . 19 . (25n - 1 - 25n - 2 . 6 + .... - 6n) + 19 . 6n ⋮ 19

=> Điều phải chứng minh

b) 11n + 2 + 122n + 1 

= 121 . 11n + 144n . 12

= 133 . 11n - 12 . 11+ 144n . 12

= 133 . 11n + 12(144n - 11n

= 133 . 11n + 12 . (144 - 11) . (144n - 1 - 144n - 2 . 11 + .... - 11n)

= 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n)

Vì 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133 và 133 . 11n ⋮ 133

=> 133 . 11n + 12 . 133 . (144n - 1 - 144n - 2 . 11 + .... - 11n) ⋮ 133

=> Điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
NH
9 tháng 2 2017 lúc 12:13

ta phải CM: \(7.25^n+12.6^n⋮19\)

ta có: \(25^n\)đồng dư \(6^n\)mod 19

nên bt trên đồng dư với \(7.6^n+12.6^n\)mod 19

mà \(7.6^n+12.6^n=19.6^n⋮19\)( ĐPCM)

Bình luận (0)
PT
Xem chi tiết
LN
Xem chi tiết
AH
5 tháng 10 2017 lúc 1:26

Lời giải:

a)

\(A=11^{n+2}+12^{2n+1}\)

Ta thấy \(12^2\equiv 11\pmod {133}\Rightarrow 12^{2n+1}\equiv 11^n.12\pmod {133}\)

Do đó \(A=11^{n+2}+12^{2n+1}\equiv 11^{n+2}+11^n.12\pmod {133}\)

\(\Leftrightarrow A\equiv 11^n(11^2+12)\equiv 11^n.133\equiv 0\pmod {133}\)

Vậy \(A\vdots 133\) (đpcm)

b) Đề bài không rõ

c)

Ta thấy: \(5^{2}=25\equiv 6\pmod {19}\)

\(\Rightarrow 7.5^{2n}\equiv 7.6^n\pmod {19}\)

\(\Rightarrow 7.5^{2n}+12.6^n\equiv 7.6^n+12.6^n\equiv 19.6^n\equiv 0\pmod {19}\)

Vậy \(7.5^{2n}+12.6^n\vdots 19\) (đpcm)

Bình luận (0)