Những câu hỏi liên quan
MZ
Xem chi tiết
H24
19 tháng 3 2021 lúc 0:06

Ta có: $p$ là số nguyên tố $>3$

suy ra $p\not\vdots 3$

Số chính phương chia 3 dư 0 hoặc 1 mà $p^2$ là số chính phương
$p^2\not\vdots 3$ suy ra $p^2 \equiv 1 (mod 3) $

Mà $2009 \equiv 2 (mod 3)$

nên $p^2+2009 \equiv 3 \equiv 0 (mod 3)$

Hay $p^2+2009 \vdots 3$

mà $p^2+2009>3$ nên $p^2+2009$ là hợp số

Bình luận (3)
H24
13 tháng 4 2023 lúc 21:16

Ta có: p� là số nguyên tố >3>3

suy ra p⋮/3�⋮̸3

Số chính phương chia 3 dư 0 hoặc 1 mà p2�2 là số chính phương
p2⋮/3�2⋮̸3 suy ra p2≡1(mod3)�2≡1(���3)

Mà 2009≡2(mod3)2009≡2(���3)

nên p2+2009≡3≡0(mod3)�2+2009≡3≡0(���3)

Hay p2+2009⋮3�2+2009⋮3

mà p2+2009>3�2+2009>3 nên p2+2009�2+2009 là hợp số

 

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 10 2017 lúc 13:37

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 1 2020 lúc 14:00

a) Nếu n = 3k+1 thì  n 2 = (3k+1)(3k+1) hay  n 2  = 3k(3k+1)+3k+1

Rõ ràng  n 2  chia cho 3 dư 1

Nếu n = 3k+2 thì  n 2 = (3k+2)(3k+2)  hay  n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên  n 2  chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2  chia cho 3 dư 1 tức là   p 2 = 3 k + 1  do đó  p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3

Vậy p 2 + 2003  là hợp số

Bình luận (0)
HP
25 tháng 6 2023 lúc 8:22

a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

b) p là số nguyên tố > 3 => p lẻ => plẻ => p + 2003 chẵn => p2 + 2003 là hợp số

Bình luận (0)
TN
Xem chi tiết
PS
Xem chi tiết
LA
Xem chi tiết
DH
27 tháng 3 2017 lúc 14:21

p là số nguyên tố lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2

Mà dạng 3k+1 không thể xảy ra nên p = 3k+2

Do đó, ta có: p2+2012 = (3k+2)2+2012 = (3k+2)(3k+2)+2012

                                 = 3k(3k+2)+2(3k+2)+2012 = 9k2+6k+6k+4+2012

                                 = 9k2+12k+2016 = 3(3k2+4k+672)

=> p2+2012 chia hết cho 3 => p2+2012 là hợp số

                                 

Bình luận (0)
NN
Xem chi tiết
AH
27 tháng 10 2023 lúc 23:48

Lời giải:
Vì $p$ là snt lớn hơn $3$ nên $p$ không chia hết cho $3$.

TH1: $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$

$p^2+2012=(3k+1)^2+2012=9k^2+6k+2013=3(3k^2+2k+671)\vdots 3$

TH2: $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$

$p^2+2012=(3k+2)^2+2012=9k^2+12k+2016=3(3k^2+4k+672)\vdots 3$

Vậy $p^2+2012$ luôn chia hết cho $3$. Mà $p^2+2012>3$ nên là hợp số.

Bình luận (0)
LQ
Xem chi tiết
BL
14 tháng 9 2023 lúc 20:45

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

Bình luận (0)
TP
Xem chi tiết
TD
30 tháng 12 2015 lúc 10:53

1/ Là hợp số

2/Là số nguyên tố

Nhớ tich cho mình nha

Bình luận (0)
NM
30 tháng 12 2015 lúc 10:53

1. 4p+1 là hợp số

2.p+8 là số nguyên tố

Mọi người tick ủng hộ nhé

Bình luận (0)