\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-\sqrt{400}\)
5\(\sqrt{16}\)-4\(\sqrt{9}\)+\(\sqrt{25}\)-0,3\(\sqrt{400}\)
E = \(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
\(E=5.4-4.3+5-0,3.20=20-12+5-6=7\)
\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
\(5\sqrt{16}-4\sqrt{9}-\sqrt{25}-0,3\sqrt{400}\)
\(=5.4-4.3+5-0,3.20\)
\(=20-12+5-6\)
\(=7\)
\(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
\(5.\sqrt{16}-4.\sqrt{9}+\sqrt{25}-0,3.\sqrt{400}\)
\(=5.4-4.3+5-\frac{3}{10}.20\)
\(=20-12+5-6\)
\(=8+5-6\)
\(=13-6\)
\(=7\)
=5*4-4*3+5-0.3*20
=20-12+5-6
=8+5-6
=13-6
=7
tính: \(5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
Ta có : \(5\sqrt{16}-4\sqrt{9}+\sqrt{25}\)-0,3\(\sqrt{400}\)
= 5.4 - 4.3 + 5 - 0,3.20
= 20-12+5-6
= 9
Tính \(\sqrt{1}-\sqrt{4}+\sqrt{9}-\sqrt{16}+\sqrt{25}-\sqrt{36}+.....-\sqrt{400}\)
EEEEEEEEEEEEEE ĐÉ
\(\sqrt{1}-\sqrt{4}+\sqrt{9}-\sqrt{16}+\sqrt{25}-\sqrt{36}+...-\sqrt{400}\)
\(=1-2+3-4+5-6+...-400\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(399-400\right)\)
\(=-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\) (200 số hạng -1)
\(=\left(-1\right).200=-200\)
GIÚP JMK VỚI:
\(E=5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
NHANH HỘ MK NHA. THANKS
\(E=5\sqrt{16}-4\sqrt{9}+\sqrt{25}-0,3\sqrt{400}\)
\(E=5\times4-4\times3+5-0,3\times20\)
\(E=20-12+5-6\)
\(E=6\)
Hok tốt
a) \(\sqrt{4x^2-9}=2\sqrt{x+3}\)
b) \(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
c) \(\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27\sqrt{\dfrac{x-1}{81}}=4\)
d)\(5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)
\(ĐK:x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)
\(\Leftrightarrow4x^2-9=4x+12\)
\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)
\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(ĐK:x\ge5\)
\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)
ĐK:x>=1
\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)
\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)
\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)
\(ĐK:x\ge3\)
\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)
\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)
\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x-3}=0\) (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)