Tìm giá trị nhỏ nhất của biểu thức
A= \(\frac{2x^2-16x+43}{x^2-8x+22}\)
Tìm giá trị nhỏ nhất của biểu thức A= 2x^2 - 16x + 43 / x^2 - 8x + 22
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau
a) A= \(\dfrac{-3}{x^2-5x+1}\)
b) B=\(\dfrac{2x^2+4x+4}{x^2}\)
c) C= \(\dfrac{2x^2-16x+41}{x^2-8x+22}\)
tìm giá trị nhỏ nhất của biểu thức s
=2x^2+16x+21/x^2+8x+3
tìm GTNN của biểu thức:
A= \(\frac{2x^2-16x+43}{x^2-8x+22}\)
giúp mình vs nhé?!
A = 2.(x^2-8x+22)-1/x^2-8x+22 = 2 - 1/x^2-8x+22
Có : x^2-8x+22 = (x^2-8x+16)+6 = (x-4)^2+6 >= 6 => 1/x^2-8x+22 < = 1/6
=> A = 2 - 1/x^2-8x+22 >= 2-1/6 = 11/6
Dấu "=" xảy ra <=> x-4 = 0 <=> x=4
Vậy GTNN của A = 11/6 <=> x=4
k mk nha
Tìm GTNN của A= \(\frac{2x^2-16x+43 }{x^2-8x+22}\)
\(A=\frac{2x^2-16x+43}{x^2-8x+22}\Leftrightarrow Ax^2-8Ax+22A-2x^2+16x-43=0\)
\(\Leftrightarrow x^2\left(A-2\right)-x\left(8A-16\right)+22A-43=0\)
\(\Delta=\left[-\left(8A-16\right)\right]^2-4\left(A-2\right)\left(22A-43\right)\)
\(=-24A^2+92A-88\). \(\Delta\) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow-24A^2+92A-88\ge0\)\(\Leftrightarrow6A^2-23A+22\le0\)
\(\Leftrightarrow\left(A-2\right)\left(6A-11\right)\le0\)\(\Rightarrow\frac{11}{6}\le A\le2\)
Ta có \(A=\frac{2x^2-16x+43}{x^2-8x+22}\)
\(\Leftrightarrow\frac{2x^2-16x+44-1}{x^2-8x+22}=\frac{2x^2-16x+44}{x^2-8x+22}-\frac{1}{x^2-8x+22}\)
\(\Leftrightarrow\frac{2.\left(x^2-8x+22\right)}{x^2-8x+22}-\frac{1}{x^2-8x+22}=2-\frac{1}{x^2-8x+22}\)
Muốn A có gtnn thì \(\frac{1}{x^2-8x+22}\)Phải lớn nhất
Suy Ra \(x^2-8x+22\)Phải nhỏ nhất
\(\Leftrightarrow x^2-8x+22=x^2-8x+16+6=\left(x-4\right)^2+6\)
Vậy GTNN của \(x^2-8x+22\)Là 6
Suy Ra GTLN của \(\frac{1}{x^2-8x+22}\) Là \(\frac{1}{6}\)
Vậy GTNN của \(A=2-\frac{1}{6}=\frac{11}{6}\)Khi x-4=0 => x=4
Bài 6:Tìm giá trị lớn nhất của biểu thức
a) A=-x2+6x-11 b) B=5-8x-x2 c) C=4x-x2+1
Bài 7:Tìm giá trị nhỏ nhất của biểu thức
a) A=x2-6x+11 b) B=x2-2x+y2+4y+8 c) C=x2-4xy+5y2+10x-22y+28
Bài 6:
a) Ta có: \(A=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu '=' xảy ra khi x=3
b) Ta có: \(B=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Dấu '=' xảy ra khi x=-4
c) Ta có: \(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
Bài 7:
a) Ta có: \(x^2-6x+11\)
\(=x^2-6x+9+2\)
\(=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
tìm giá trị nhỏ nhất của biểu thức
A=|2x-2|+|2x-2023|
Tìm giá trị nhỏ nhất của biểu thức
A = x2 - 8x + 5
\(A=x^2-8x+5\)
\(=\left(x^2-8x+16\right)-11\)
\(=\left(x-4\right)^2-11\)
\(=-11+\left(x-4\right)^2\)
Vì \(\left(x-4\right)^2\) ≥ 0
⇒ A ≥ -11
Min A=-11 ⇔\(x-4=0\)
⇔\(x=4\)
Tìm giá trị nhỏ nhất của phân thức B = 2 x 2 - 16 x + 41 x 2 - 8 x + 22