Những câu hỏi liên quan
JY
Xem chi tiết
DH
22 tháng 12 2017 lúc 12:40

Ta có :\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+b^2+2ab\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

Suy ra \(\frac{2011}{2a^2+2b^2+2008}\le\frac{2011}{\left(a+b\right)^2+2008}=\frac{2011}{4+2008}=\frac{2011}{2012}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

Bình luận (0)
H24
Xem chi tiết
BT
20 tháng 7 2021 lúc 9:32

a) undefined

Bình luận (0)
BT
20 tháng 7 2021 lúc 9:36

b) 

https://hoc24.vn/cau-hoi/c-voi-a-b-c-la-cac-so-duong-thoa-man-dieu-kien-a-b-c-2-tim-max-q-sqrt2abcsqrt2bcasqrt2cab.8298826302

Bạn có thể tham khảo ở đây. Đừng quên like giúp mik nha bạn. Thx

Bình luận (0)
HC
Xem chi tiết
H24
16 tháng 11 2018 lúc 17:33

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

Bình luận (0)
HC
16 tháng 11 2018 lúc 17:39

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

Bình luận (0)
TP
Xem chi tiết
PL
3 tháng 1 2018 lúc 11:30

Thiếu đề k bn ???

Bình luận (0)
TD
Xem chi tiết
TN
28 tháng 1 2018 lúc 13:36

Áp dụng BĐT Cauchy-Schwarz ta có:

\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{2a}{a+b}\cdot\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}\cdot\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}\cdot\frac{c}{2\left(b+c\right)}}\)

\(\le\frac{1}{2}\left(\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}\right)\)

\(=\frac{1}{2}\left(2+2+\frac{1}{2}\right)=\frac{9}{4}\)

Bình luận (0)
TD
28 tháng 1 2018 lúc 15:35

cảm ơn nha

Bình luận (0)
HH
28 tháng 1 2018 lúc 16:36

Áp dụng BĐT Cauchy-Schwarz ta có :

\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)

\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)

\(=\sqrt{\frac{2a}{a+b}.\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}.\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}.\frac{c}{2\left(b +c\right)}}\)

\(\le\frac{1}{2}\left(\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}\right)\)

\(=\frac{1}{2}\left(2+2+\frac{1}{2}\right)=\frac{9}{4}\)

P/s : Mình tự nghĩ chứ không phải mình copy đâu

Bình luận (0)
LD
Xem chi tiết
TN
12 tháng 6 2021 lúc 16:28

a/ Ta có: `2a = 3b => a/3 = b/2`

Đặt `a/3 = b/2 = k`   \(\left(k\ne0\right)\)

`=> a = 3k ; b = 2k`

`=> M =`\(\dfrac{\left(3k\right)^3-2.3k.\left(2k\right)^2+\left(2k\right)^3}{\left(3k\right)^2.2k+3k.\left(2k\right)^2+\left(2k\right)^3}=\dfrac{27k^3-24k^3+8k^3}{18k^3+12k^3+8k^3}=\dfrac{11k^3}{38k^3}=\dfrac{11}{38}\)

Vậy `M = 11/38`.

b/ Giả sử tồn tại số chính phương `a^2` có tổng các số tự nhiên là 20142015

Vì \(20142015⋮3\) nên \(a^2⋮3\)

\(\Rightarrow a^2⋮3^2\)

\(\Rightarrow a^2⋮9\)

Mà \(20142015⋮9̸\Rightarrow a^2⋮9̸\) (vô lí)

`=>` Không tồn tại số chính phương `a^2` nào có tổng các số tự nhiên là 20142015

\(\Rightarrow\) 1 số tự nhiên có tổng các chữ số là `20142015` không phải là số chính phương   (đpcm)

Bình luận (0)
TB
Xem chi tiết
H24
Xem chi tiết
TN
2 tháng 1 2018 lúc 21:19

Đặt \(Q=\dfrac{2011}{2a^2+2b^2+2008}\)

Ta có:

\(\dfrac{a+b}{2}=1=>a+b=2=>a=2-b\)

Thay a=2-b vào Q ta được:

\(Q=\dfrac{2011}{2a^2+2\left(2-a\right)^2+2008}\)

=\(\dfrac{2011}{2a^2+2\left(4-4a+a^2\right)+2008}\)

=\(\dfrac{2011}{2a^2+8-8a+2a^2+2008}\)

=\(\dfrac{2011}{4a^2-8a+2016}\)

=\(\dfrac{2011}{4a^2-8a+4+2012}\)

=\(\dfrac{2011}{4\left(a^2-2a+1\right)+2012}\)

=\(\dfrac{2011}{4\left(a-1\right)^2+2012}\)

\(2a^2+2b^2+2008>0với\forall a,b\)

nên để Q đạt GTLN thì \(2a^2+2b^2+2008\)đạt GTNN hay \(4\left(a-1\right)^2+2012\)đạt GTNN

Mặt khác \(4\left(a-1\right)^2\)\(\ge\)0 với \(\forall\)a

Do đó\(4\left(a-1\right)^2+2012\) \(\ge\)0 với \(\forall\)a

Dấu "=" xảy ra <=> a-1=0<=>a=1

Mà a+b=2=>b=1

Vậy GTN của \(Q=\dfrac{2011}{2a^2+2b^2+2008}\)\(\dfrac{2011}{2012}\)khi a=b=1

Bình luận (0)
H24
14 tháng 12 2017 lúc 20:27

Help me , please !!!!!!!!!!

Bình luận (0)
NT
4 tháng 1 2018 lúc 11:34

Cách 2 :

Ta có : \(\dfrac{a+b}{2}=1\Rightarrow a+b=2\)

Mặt khác : Với \(\forall a,b\) thì : \(a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=4\)

\(\Rightarrow2a^2+2b^2+2008\ge2012\)

\(\Rightarrow\dfrac{2011}{2a^2+2b^2+2008}\le\dfrac{2011}{2012}\)

Dấu '' = '' xảy ra khi a = b = 1

Vậy GTLN của biểu thức là \(\dfrac{2011}{2012}\Leftrightarrow a=b=1\)

Bình luận (2)
PB
Xem chi tiết
CT
9 tháng 12 2018 lúc 9:53

Đáp án D

Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu  (S) và mặt phẳng (P) sao cho KM lớn nhất

Bình luận (0)