Những câu hỏi liên quan
HT
Xem chi tiết
KN
10 tháng 9 2019 lúc 11:42

\(A=4-6x-x^2=-\left(x^2+6x-4\right)=-\left(x^2+6x+9-13\right)\)

\(=-\left[\left(x+3\right)^2-13\right]=-\left(x+3\right)^2+13\le13\)

Vậy \(A_{max}=13\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

\(B=3x^2-6x+1=\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+3-2\)

\(=\left(\sqrt{3}x-\sqrt{3}\right)^2-2\ge-2\)

Vậy \(B_{min}=-2\Leftrightarrow\sqrt{3}x-\sqrt{3}=0\Leftrightarrow x=1\)

\(C=5x^2-2x-3=\left(\sqrt{5}x\right)^2-2.\sqrt{5}x.\frac{1}{\sqrt{5}}+\frac{1}{5}-\frac{16}{5}\)

\(=\left(\sqrt{5}x-\frac{1}{\sqrt{5}}\right)^2-\frac{16}{5}\ge-\frac{16}{5}\)

Vậy \(C_{min}=-\frac{16}{5}\Leftrightarrow\sqrt{5}x-\frac{1}{\sqrt{5}}=0\Leftrightarrow\sqrt{5}x=\frac{1}{\sqrt{5}}\Leftrightarrow x=\frac{1}{5}\)

Bình luận (0)
NA
Xem chi tiết
TG
16 tháng 8 2021 lúc 9:04

undefined

Bình luận (1)
H24
Xem chi tiết
NT
2 tháng 3 2023 lúc 23:35

a: =>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

b: =>2x^2=11

=>x^2=11/2

=>\(x=\pm\dfrac{\sqrt{22}}{2}\)

c: Δ=5^2-4*1*7=25-28=-3<0

=>PTVN

f: =>6x^4-6x^2-x^2+1=0

=>(x^2-1)(6x^2-1)=0

=>x^2=1 hoặc x^2=1/6

=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)

d: =>(5-2x)(5+2x)=0

=>x=5/2 hoặc x=-5/2

e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2

=>3x^2+5x-8=0 và x>=-1/2

=>3x^2+8x-3x-8=0 và x>=-1/2

=>(3x+8)(x-1)=0 và x>=-1/2

=>x=1

Bình luận (0)
TA
Xem chi tiết
TG
7 tháng 8 2021 lúc 14:29

undefined

Bình luận (0)
NH
Xem chi tiết
HH
Xem chi tiết
NT
26 tháng 6 2023 lúc 8:30

2: =(2x+1)^2-y^2

=(2x+1+y)(2x+1-y)

3: =x^2(x^2+2x+1)

=x^2(x+1)^2

4: =x^2+6x-x-6

=(x+6)(x-1)

5: =-6x^2+3x+4x-2

=-3x(2x-1)+2(2x-1)

=(2x-1)(-3x+2)

6: =5x(x+y)-(x+y)

=(x+y)(5x-1)

7: =2x^2+5x-2x-5

=(2x+5)(x-1)

8: =(x^2-1)*(x^2-4)

=(x-1)(x+1)(x-2)(x+2)

9: =x^2(x-5)-9(x-5)

=(x-5)(x-3)(x+3)

Bình luận (0)
TY
Xem chi tiết
H24
5 tháng 11 2017 lúc 17:11

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

Bình luận (0)
DG
30 tháng 9 2018 lúc 5:18

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

Bình luận (0)
DD
Xem chi tiết
LL
22 tháng 9 2021 lúc 10:40

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

 

Bình luận (0)
MN
Xem chi tiết
AH
23 tháng 8 2021 lúc 18:25

Lời giải:
a.

a. $(x-1)(x+2)-(x-3)(x+1)=5x-3$

$\Leftrightarrow (x^2+x-2)-(x^2-2x-3)=5x-3$

$\Leftrightarrow 3x+1=5x-3$

$\Leftrightarrow 4=2x$

$\Leftrightarrow x=2$

b.

$(2x-1)(x+3)-(x-2)(x+3)=3x+1$

$\Leftrightarrow (2x^2+5x-3)-(x^2-4)=3x+1$

$\Leftrightarrow x^2+5x+1=3x+1$

$\Leftrightarrow x^2+2x=0$

$\Leftrightarrow x(x+2)=0$

$\Leftrightarrow x=0$ hoặc $x=-2$

c.

$x^2(x-1)-x(x-1)(x+1)=0$

$\Leftrightarrow x^2(x-1)-(x^2+x)(x-1)=0$

$\Leftrightarrow (x-1)[x^2-(x^2+x)]=0$

$\Leftrightarrow (x-1)(-x)=0$

$\Leftrightarrow x-1=0$ hoặc $-x=0$

$\Leftrightarrow x=1$ hoặc $x=0$

d.

$4x(x-5)-(2x-3)(2x+3)=9$

$\Leftrightarrow 4x^2-20x-(4x^2-9)=9$

$\Leftrightarrow -20x=0$

$\Leftrightarrow x=0$

Bình luận (0)
NT
23 tháng 8 2021 lúc 22:47

a: Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-3\right)\left(x+1\right)=5x-3\)

\(\Leftrightarrow x^2+2x-x-2-x^2-x+3x+3-5x+3=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow2x=4\)

hay x=2

b: Ta có: \(\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=3x+1\)

\(\Leftrightarrow2x^2+6x-x-3-x^2+4-3x-1=0\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

c: Ta có: \(x^2\left(x-1\right)-x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

d: Ta có: \(4x\left(x-5\right)-\left(2x-3\right)\left(2x+3\right)=9\)

\(\Leftrightarrow4x^2-20x-4x^2+9=9\)

hay x=0

Bình luận (0)