Cho A=3+32+33+...+3100. CM A chia het cho 120
Cho A=3+32+33+34+...+3100 . CM A chia het cho 120
Cho A= 3+32+33+34+...................+3100. Chung Minh Rang A Chia Het Cho 35
Cho A = 3 + 32 + 33 + 34 ………+ 3100 chứng minh A chia hết cho 120.
\(A=3+3^2+3^3+3^4+.......+3^{100}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+.......+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(\Rightarrow A=3.\left(1+3+3^2+3^3\right)+........+3^{97}.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=3.40+.........+3^{97}.40\)
\(\Rightarrow A=40.\left(3+.......+3^{97}\right)\)
\(\Rightarrow A⋮40\)( 1 )
Vì \(A\)là tổng của các bậc lũy thừa của 3 nên \(A⋮3\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(A⋮40.3\)
\(\Rightarrow A⋮120\)
Vậy \(A⋮120\)( ĐPCM )
Cho A=3+32+33+34+...+3100.Chứng minh rằng A chia hết cho 120.
phải là chứng minh A chia hết cho 121
cho A=3+32+33+34+......+3100.CMR: A chia hết cho 120
Solution
We have: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100)
3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101
Inferred: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
So A = 3101−12
Please help me
Dịch ra là: Ta có: 3A = 3. (1 + 3 + 32 + 33 + ... + 399 + 3100) (1 + 3 + 32 + 33 + ... + 399 + 3100) 3A = 3 + 32 + 33 + ... + 3100 + 31013 + 32 + 33 + ... + 3100 + 3101 Suy ra: 3A - A = (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) (3 + 32 + 33 + ... + 3100 + 3101) - (1 + 3 + 32 + 33 + ... + 399 + 3100) ⇒⇒ A = 3101−123101−12 Vậy A = 3101−12
Mà đoạn 2A sai nhé bạn, sửa lại:
2A = 3101−13101−1 2A=-10001
A=-10001/2
A=-5000,5
Vậy A=-5000,5
Bài 1: tính tổng dãy số sau:
A = 1+3+32+33+...+399+3100
Các bạn xem bài giải của mình nếu đúng tick cho mình nhé!
Giải
Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+31013+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−13101−1
⇒⇒ A = 3101−123101−12
Vậy A = 3101−12
xin lỗi bài trên của mình làm sai
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2
Bài 8: (0,5 điểm) Cho A = 1 + 3 + 32 + 33 +…….+ 3100. A có chia hết cho 13 không? Vì sao?
Câu 17: (1 đ)
a) Tìm số nguyên x,y biết:
b) Cho M = 1+ 3+32 + 33 + 34 + …+ 399 + 3100 . Tìm số dư khi chia M cho 13, chia M cho 40 .