Chứng tỏ rằng abc+bca+cab chia hết cho 111
chứng minh rằng: abc+bca+cab chia hết cho 111
có : abc + cba +cab : hết 111
100 a +10b+1c+100b+10c+1a+100c+10b+1a
=(100 a +10b+1c) + (100b+10c+1a) + ( 100c+10b+1a )
= 111 abc + 111bca+111cab : hết 111
= 111 . ( abc + bca + cab ) : hết 111
vậy , abc + bca + cab : hết cho 111
mất rất nhìu thời gian TT TT
abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b
=111a+111b+111c=111(a+b+c)chia hết cho 111 (đpcm)
Có abc + bca + cab = 100a+10b+c+100b+10c+a+100c+10a+b = 111a+111b+111c = 111.(a+b+c) chia hết cho 111
=> ĐPCM
k mk nha
chứng tỏ rằng nếu abc chia hết cho 37 thì bca và cab cũng chia hết cho 37
Tham khảo câu hỏi tương tự nha bạn
CHÚC BẠN HỌC TỐT NHA !
CHỨNG TỎ : abc+bca+cab chia hết cho 37
Ta có:
abc + bca + cab
= 111a + 111b + 111c
= 111.(a + b + c)
=37.3.(a+b+c)
=> abc+bca+cab chia hết cho 37
Vậy....
abc+bca+cab = 111a + 111b + 111c = 111(a+b+c) = 3.37.(a+b+c)
=> abc+bca+cab chia hết cho 37
Bài 1:
a/ Chứng tỏ aabb chia hết cho 11
b/ Tính tổng abc+bca+cab, chứng tỏ tổng này chia hết cho 11
a/ Ta có: aabb = a.1000+a.100+b.10+b
= a. (1000+100) + b. (10+1)
= 1100.a + 11.b
Vì \(1100⋮11\)\(\Rightarrow\)\(a1100⋮11\)
\(\Rightarrow\)\(1100.a+11.b⋮11\)
Mình chỉ biết làm câu a thôi :P
chứng minh rằng abc+bca+cab chia hết cho 3
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111(a + b + c)
= 3.37(a + b + c) ⋮ 3
Vậy (abc + bca + cab) ⋮ 3
Chứng minh rằng : abc + bca + cab chia hết cho 37
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= (100a + a + 10a) + (10b + 100b + b) + (c + 10c + 100c)
= 111a + 111b + 111c
= 111(a + b + c)
= 37.3(a + b + c) \(⋮\) 37 (đpcm)
ta có:abc+bca+cab=111.a
Vi 111 chia het cho 7 nen abc+bac+cab
k đ nha
chứng minh rằng (abc+bca+cab) chia hết cho 11
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111 ( a + b + c ) chia hết cho 11 ( đpcm )
bài 5 :
a) Chứng minh rằng : số 111 không phải là số nguyên tố .
b) Cho A = abc + bca + cab. Chứng minh rằng : A chia hết cho 37
a; Vì Ư(111)={1;3;37;111} nên 111 ko phải số nguyên tố
A=abc +bca+cab
A=a x100+bx10+c+b x100+c x10+a +c x100+a x10+b
A=a x111+b x111+c x111
A=111 x(a+b+c)
A=37 x3 x(a+b+c) : hết cho 37
tick nha nhanh nhất nè
mà đây là toán 6 mà
Chứng minh rằng : mếu abc chia hết cho 37 thì bca và cab đều chia hết cho 37
đặt A = abc = ( 102 . a + 10 . b + c ) \(⋮\)37
\(\Rightarrow\)10A = ( 103 . a + 102 . b + 10c ) \(⋮\)37
10A = 102 . b + 10 . c + a + 999a = bca + 999a
vì 999a = 37 . 27a \(⋮\)37 ; 10A \(⋮\)37
suy ra : bca \(⋮\)37
tương tự ta có : 10bca \(⋮\)37, 999b \(⋮\)37
suy ra : cab \(⋮\)37