tính tổng : S=\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2011}\)
Tính S=\(\frac{1}{1^4+1^2+1}+\frac{2}{2^4+2^2+1}+\frac{3}{3^4+3^2+1}+......+\frac{2011}{2011^4+2011^2+1}\)
Ta có: \(2.S=2.\left(\frac{1}{1^4+1^2+1}+...+\frac{2011}{2011^4+2011^2+1}\right)\)
Xét hạng tử tống quát: \(\frac{2.n}{n^4+n^2+1}=\frac{2.n}{\left(n^4+2n^2+1\right)-n^2}=\frac{\left(n^2+n+1\right)-\left(n^2-n+1\right)}{\left(n^2-n+1\right)\left(n^2+n+1\right)}\)\(=\frac{1}{n^2-n+1}-\frac{1}{n^2+n+1}\)
Từ đó: \(\frac{2.1}{1^4+1^2+1}=\frac{1}{1}-\frac{1}{3}\)
\(\frac{2.2}{2^4+2^2+1}=\frac{1}{3}-\frac{1}{7}\)
.....
\(\frac{2.2011}{2011^4+2011^2+1}=\frac{1}{4042111}-\frac{1}{4046133}\)
Từ đó => 2.S= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+...+\frac{1}{4042111}-\frac{1}{4046133}\)=\(1-\frac{1}{4046133}\)=\(\frac{4046132}{4046133}\)
=> S\(=\frac{2023066}{4046133}\)
tính tổng:
\(S=1+\frac{1}{1+2}+\frac{1}{1+2+3}+............+\frac{1}{1+2+3+.....+2011}\)
giải chi tiết nhé ! rồi mình tick cho 3 cái
\(S=1+\frac{1}{1+2}+\frac{1}{1+2+3}+..+\frac{1}{1+2+3+..+2011}\)
\(S=1+\frac{1}{2.\left(2+1\right):2}+\frac{1}{3.\left(3+1\right):2}+...+\frac{1}{2011.\left(2011+1\right):2}\)
\(S=1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2011.2012}\)
\(S=1+2\left(\frac{1}{2}-\frac{1}{\cdot3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}\right)\)
\(S=1+2\left(\frac{1}{2}-\frac{1}{2012}\right)\)
\(S=1+2.\frac{1}{2}-2.\frac{1}{2012}\)
\(S=1+1-\frac{1}{1006}\)
\(S=\frac{2011}{1006}\)
Nho 3 tick cho mk nha
tính S=\(1+\frac{1}{2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2011}\)
tính tổng S
S=\(\frac{1}{1^4+1^2+1}+\frac{2}{2^4+2^2+1}+...+\frac{2011}{2011^4+2011^2+1}\)
tính tổng:
\(S=1+\frac{1}{1+2}+\frac{1}{1+2+3}+..........+\frac{1}{1+2+3+.....+2011}\)
làm nhanh lên nhé mình cần gấp ! ai làm nhanh nhất mình tick cho 5 cái
\(\text{Công thức tổng quát: }\frac{1}{1+2+3+...+n}=\frac{2}{\left(n+1\right).n}\)
bạn thay vào òi làm tiếp ,phần tiếp theo dễ thui
TÍNH : \(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+....+\frac{1}{2011}}\)
nâng cao phát triển toán 7 đấy
mấy bài đấu thì phải
Đặt: \(L=\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}\)
\(L=1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+...+\left(\frac{1}{2011}+1\right)\)
\(L=\frac{2012}{2012}+\frac{2012}{2}+\frac{2012}{3}+..+\frac{2012}{2011}\)
\(L=2012\left(\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2011}+\frac{1}{2012}\right)\)
Hay: \(P=\frac{1}{2012}\)
cho 2011 số tự nhiên thõa mãn điều kiện
\(\frac{1}{x_1^{11}}+\frac{1}{x_2^{11}}+\frac{1}{x_3^{11}}+...+\frac{1}{x_{2011}^{11}}=\frac{2011}{2048}\)
tính tổng \(M=\frac{1}{x_1^1}+\frac{1}{x_2^2}+\frac{1}{x_3^3}+...+\frac{1}{x_{2011}^{2011}}\)
Gọi i là đại diện cho các số từ 1 đến 2011
ĐKXĐ: \(a_i\ne0\left(i=1,2,3,..,2011\right)\)
Xét \(a_i=1\) Ta có: \(\frac{1}{a^{11}_i}=1>\frac{2011}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}>\frac{2011}{2048}\left(loai\right)\)
Xét \(a_i\ge2\) Ta có: \(\frac{1}{a^{11}_i}\le\frac{1}{2048}\Rightarrow\frac{1}{x^{11}_1}+\frac{1}{x^{11}_2}+...+\frac{1}{x^{11}_{2011}}\le\frac{2011}{2048}\)
Dấu "=" xảy ra khi \(a_i=2\)
Thay vào ta có:
\(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)
\(\Rightarrow2M-M=\left(1+\frac{1}{2}+...+\frac{1}{2^{2010}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)\)
\(\Rightarrow M=1-\frac{1}{2^{2011}}\)
cho 2011 số tự nhiên x1,x2,x3,....,x2011 thỏa mãn điều kiện
\(\frac{1}{^{x^{11}}_1}+\frac{1}{_2x^{11}}+.....+\frac{1}{_{2011}x^{11}}=\frac{2011}{2048}\) tính tổng
\(\frac{1}{_1x^1}+\frac{1}{_2x^2}+....+\frac{1}{_{2011}x^{2011}}\)
Tính P:
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+...+\frac{1}{2011}}\)
Ta có :
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{1+\left(\frac{2010}{2}+1\right)+\left(\frac{2009}{3}+1\right)+....+\left(\frac{1}{2011}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{\frac{2012}{2}+\frac{2012}{3}+....+\frac{2012}{2011}+\frac{2012}{2012}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}}{2012\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2012}\right)}\)
\(\frac{1}{2012}\)