tìm m để pt x^4 +(3m-1)x^3-(3m-2)x^2+(3m-1)x+1 vô ngiệm
x3-3x2+(3m-1)x+3m+3=0
tìm m để pt trên có 3 ngiệm phân biệt
(please help me)
đang cần gấp
toán lớp 9 bó tay .com
xin lỗi em mới học lớp 5
Em thử nhé! Hên xui thôi. Hên tìm được nghiệm đúng ngay từ đầu thì dễ, còn tìm không đúng thì không những khó mà còn sai -_-"
Gọi biểu thức trên là P
Nhận xét x =1 là một nghiệm. Ta phân tích P trở thành:
\(P=\left(x+1\right)\left(x^2-4x+3m+3\right)\)
Do đó để P có 3 nghiệm phân biệt thì \(x^2-4x+3m+3\) có hai nghiệm phân biệt.
Xét phương trình \(x^2-4x+3m+3=0\). Để phương trình có hai nghiệm phân biệt thì:
\(\Delta'=\left(-2\right)^2-\left(3m+3\right)>0\Leftrightarrow m< \frac{1}{3}\)
Xem ra ok quá nhỉ ạ? Hên quá rồi :xD
Mình góp ý cho @tth nha.
Lập luận Do đó để phương trình có 3 nghiệm phân biệt thì \(x^2-4x+3m+3\) có hai nghiệm phân biệt và 2 nghiệm đó phải khác -1.
=> \(\left(-1\right)^2-4\left(-1\right)+3m+3=3m+8\ne0\Leftrightarrow m\ne-\frac{8}{3}.\)
.......
cho pt: mx +3m=3x-2 (1)
a) tìm m để pt(1) tương đương với pt (x-2)^2-x(x-3)-3=0 (2)
b)tìm điều kiện m để pt (1) vô nghiệm
c)tìm m để pt (1) có nghiệm duy nhất nguyên
Cho pt: x^2 - x + m=0 (1)
X^2 - x + 3m = 0 (2)
tìm (m#0) để một trong các ngiệm của pt (2) bằg hai lần một ngiệm của pt (1).
tìm m để pt sau có vô số nghiệm (m^3-3m^2-m+2)x=m^2+3m+2
Tham khảo:
Giải và biện luận phương trình?
(m^2+2)x= x+2m -3
m(x-m-3)= m(x-2)+6
m(x-m)=x+m-2
m^2(x-1)+m= x(3m-2)
: 4 bài toán này đều là dạng bài Giải và biện luận PT bậc nhất
Nên cách giải cũng đơn giản thôi, bạn chỉ cần chuyển các PT trên về dạng ax+b=0 là được. Mình sẽ làm thử cho bạn xem nha?
1> PT<=> (m^2+1)x -2m+3=0
Dễ thấy : a=m^2+1# 0 ( với mọi giá trị của m )
Do đó : PT luôn có nghiệm duy nhất x=(2m-3)/(m^2+1)
2> PT có dạng : -m^2 - 3m = -2m + 6
<=> -m^2 - m -6 =0
vô nghiệm với mọi giá trị của m
=> PT đã cho luôn vô nghiệm với mọi giá trị của m
3> PT <=> (m-1)x -m^2-m+2 = 0
TH1 : m-1# 0 <=> m # 1
thì PT luôn có nghiệm duy nhất : x=(m^2+m-2)/(m-1) = m+2
TH2 : m-1=0 <=> m = 1
thì PT có dạng : 0x+0 = 0
=> PT có vô số nghiệm ( hay PT có nghiệm x tùy ý )
Kết luận :
Với m # 1 : PT có nghiệm duy nhất x = m+2
Với m=1 : PT có vô số nghiệm
4> (m^2-3m+2)x -m^2+m = 0
TH1 : m^2-3m+2 = 0 <=> m=1 hoặc m=2
- Nếu m=1 thì PT có dạng : 0x+0=0
=> PT có vô số nghiệm
- Nếu m=2 thì PT có dạng : 0x-2=0
=> PT vô nghiệm
TH2 : m^2-3m+2 # <=> m # 1 và m # 2
thì PT có nghiệm duy nhất x=(m^2-m)/(m^2-3m+2) = m/(m-2)
Kết luận :
Với m=1 : PT có vô số nghiệm
Với m=2 :PT vô nghiệm
Với m # 1 và m # 2 thì PT có nghiệm duy nhất x=m/(m-2)
Chúc bạn thành công trên con đường học tập của mình.
cho pt:x2-2(m+1)x+4m=0
a) giải pt khi m=-2
b)tìm m để pt có 2 ngiệm x1,x2 thỏa mãn (x1+3)(x2+3)=3m2+12
a, Dễ quá bỏ qua .
b, Ta có : \(x^2-2\left(m+1\right)x+4m=0\)
=> \(\Delta^,=b^{,2}-ac=\left(m+1\right)^2-4m=m^2+2m+1-4m\)
=> \(\Delta^,=m^2-2m+1=\left(m-1\right)^2\ge0\)
Nên phương trình có 2 nghiệm .
- Theo vi ét có : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2\left(m+1\right)\\x_1x_2=\frac{c}{a}=4m\end{matrix}\right.\)
- Để \(\left(x_1+3\right)\left(x_2+3\right)=3m^2+12\)
<=> \(x_1x_2+3x_1+3x_2+9=3m^2+12\)
<=> \(x_1x_2+3\left(x_1+x_2\right)+9=3m^2+12\)
<=> \(4m+6\left(m+1\right)+9=3m^2+12\)
<=> \(3m^2-10m-3=0\)
<=> \(\left[{}\begin{matrix}m=\frac{5-\sqrt{34}}{3}\\m=\frac{5+\sqrt{34}}{3}\end{matrix}\right.\)
Vậy ........
cho y=x2-2(m+1)x+3m
a) Tìm m để x2-2(m+1)+3m>2 với mọi m>3
b) Tìm m để pt x2-2(m+1)+3m=0 có nghiệm \(\varepsilon\)(-1;1)
Tìm m để hệ bất phương trình : có nghiệm, vô nghiệm
a)
b)
c)
d)
e)
Cho PT ẩn x( m là tham số): \(\frac{m+3}{x+1}-\frac{5-3m}{x-2}=\frac{mx+3}{x^2-x-2}\)(1)
a)Giải PT(1) khi m=1.
b)Tìm tất cả các giá trị của tham số m để PT(1) vô nghiệm.
cho f(x)=-x^2+4x+3m-1 . xác định m để pt f(x)=0 có 2 nghiệm phân biệt (1;dương vô cùng )