Những câu hỏi liên quan
NT
Xem chi tiết
PN
16 tháng 6 2019 lúc 17:53

toán lớp 9 bó tay .com

xin lỗi em mới học lớp 5

Bình luận (0)
H24
16 tháng 6 2019 lúc 18:59

Em thử nhé! Hên xui thôi. Hên tìm được nghiệm đúng ngay từ đầu thì dễ, còn tìm không đúng thì không những khó mà còn sai -_-"

Gọi biểu thức trên là P

Nhận xét x =1 là một nghiệm. Ta phân tích P trở thành:

\(P=\left(x+1\right)\left(x^2-4x+3m+3\right)\)

Do đó để P có 3 nghiệm phân biệt thì \(x^2-4x+3m+3\) có hai nghiệm phân biệt.

Xét phương trình \(x^2-4x+3m+3=0\). Để phương trình có hai nghiệm phân biệt thì:

\(\Delta'=\left(-2\right)^2-\left(3m+3\right)>0\Leftrightarrow m< \frac{1}{3}\)

Xem ra ok quá nhỉ ạ? Hên quá rồi :xD

Bình luận (0)
DH
16 tháng 6 2019 lúc 21:23

Mình góp ý cho @tth nha. 

Lập luận Do đó để phương trình có 3 nghiệm phân biệt thì \(x^2-4x+3m+3\) có hai nghiệm phân biệt và 2 nghiệm đó phải khác -1.

=>  \(\left(-1\right)^2-4\left(-1\right)+3m+3=3m+8\ne0\Leftrightarrow m\ne-\frac{8}{3}.\)

.......

Bình luận (0)
SH
Xem chi tiết
PB
Xem chi tiết
NV
Xem chi tiết

Tham khảo:

Giải và biện luận phương trình? 
(m^2+2)x= x+2m -3 
m(x-m-3)= m(x-2)+6 
m(x-m)=x+m-2 
m^2(x-1)+m= x(3m-2) 

:  4 bài toán này đều là dạng bài Giải và biện luận PT bậc nhất 
Nên cách giải cũng đơn giản thôi, bạn chỉ cần chuyển các PT trên về dạng ax+b=0 là được. Mình sẽ làm thử cho bạn xem nha? 
1> PT<=> (m^2+1)x -2m+3=0 
Dễ thấy : a=m^2+1# 0 ( với mọi giá trị của m ) 
Do đó : PT luôn có nghiệm duy nhất x=(2m-3)/(m^2+1) 
2> PT có dạng : -m^2 - 3m = -2m + 6 
<=> -m^2 - m -6 =0 
vô nghiệm với mọi giá trị của m 
=> PT đã cho luôn vô nghiệm với mọi giá trị của m 
3> PT <=> (m-1)x -m^2-m+2 = 0 
TH1 : m-1# 0 <=> m # 1 
thì PT luôn có nghiệm duy nhất : x=(m^2+m-2)/(m-1) = m+2 
TH2 : m-1=0 <=> m = 1 
thì PT có dạng : 0x+0 = 0 
=> PT có vô số nghiệm ( hay PT có nghiệm x tùy ý ) 
Kết luận : 
Với m # 1 : PT có nghiệm duy nhất x = m+2 
Với m=1 : PT có vô số nghiệm 
4> (m^2-3m+2)x -m^2+m = 0 
TH1 : m^2-3m+2 = 0 <=> m=1 hoặc m=2 
- Nếu m=1 thì PT có dạng : 0x+0=0 
=> PT có vô số nghiệm 
- Nếu m=2 thì PT có dạng : 0x-2=0 
=> PT vô nghiệm 
TH2 : m^2-3m+2 # <=> m # 1 và m # 2 
thì PT có nghiệm duy nhất x=(m^2-m)/(m^2-3m+2) = m/(m-2) 
Kết luận : 
Với m=1 : PT có vô số nghiệm 
Với m=2 :PT vô nghiệm 
Với m # 1 và m # 2 thì PT có nghiệm duy nhất x=m/(m-2) 
Chúc bạn thành công trên con đường học tập của mình.

Bình luận (0)
SN
Xem chi tiết
NL
7 tháng 6 2020 lúc 13:27

a, Dễ quá bỏ qua .

b, Ta có : \(x^2-2\left(m+1\right)x+4m=0\)

=> \(\Delta^,=b^{,2}-ac=\left(m+1\right)^2-4m=m^2+2m+1-4m\)

=> \(\Delta^,=m^2-2m+1=\left(m-1\right)^2\ge0\)

Nên phương trình có 2 nghiệm .

- Theo vi ét có : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2\left(m+1\right)\\x_1x_2=\frac{c}{a}=4m\end{matrix}\right.\)

- Để \(\left(x_1+3\right)\left(x_2+3\right)=3m^2+12\)

<=> \(x_1x_2+3x_1+3x_2+9=3m^2+12\)

<=> \(x_1x_2+3\left(x_1+x_2\right)+9=3m^2+12\)

<=> \(4m+6\left(m+1\right)+9=3m^2+12\)

<=> \(3m^2-10m-3=0\)

<=> \(\left[{}\begin{matrix}m=\frac{5-\sqrt{34}}{3}\\m=\frac{5+\sqrt{34}}{3}\end{matrix}\right.\)

Vậy ........

Bình luận (0)
HT
Xem chi tiết
JV
Xem chi tiết
TM
Xem chi tiết
VN
Xem chi tiết