Cho A = 4 + 42 + 43+ ... + 424
a) Chứng tỏ rằng A chia hết cho 21
b ) Tìm chữ số tận cùng của A
Cho A = 1.4.7.10..…58 + 3.12.21.30…..174
a. Tìm chữ số tận cùng của A.
b. Chứng tỏ rằng A chia hết cho 377.
Bạn tham khảo bài sau nhé:
https://hoidap247.com/cau-hoi/2044248
cho A =1.4.7.10.....58+3.12.21.30.....174
a] tìm chữ số tận cùng của A
b] chứng tỏ rằng A chia hết cho 377
b) Đặt \(B=1\cdot4\cdot7\cdot10\cdot...\cdot58\)
Vì trong dãy số B, quy luật sẽ là kể từ số thứ 2 thì số sau bằng số trước thêm 3 đơn vị nên \(B=1\cdot4\cdot7\cdot10\cdot13\cdot...\cdot58\)
\(\Leftrightarrow B⋮13\cdot58\)
\(\Leftrightarrow B⋮13\cdot29\)
hay \(B⋮377\)
Đặt \(C=3\cdot12\cdot21\cdot30\cdot...\cdot174\)
Vì trong dãy số C có quy luật là các số chia 9 dư 3 nên \(C=3\cdot12\cdot21\cdot30\cdot39\cdot...\cdot174\)
\(\Leftrightarrow C=3\cdot12\cdot21\cdot30\cdot3\cdot13\cdot...\cdot29\cdot6\)
\(\Leftrightarrow C⋮13\cdot29\)
\(\Leftrightarrow C⋮377\)
Ta có: \(A=1\cdot4\cdot7\cdot10\cdot...\cdot58+3\cdot12\cdot21\cdot30\cdot...\cdot174\)
\(\Leftrightarrow A=B+C\)
mà \(B⋮377\)(cmt)
và \(C⋮377\)(cmt)
nên \(A⋮377\)(đpcm)
chứng tỏ rằng
A)số có hai chữ số tận cùng hợp thành 1 số chia hết cho 4 thì số đó chia hết cho 4
B) Số có ba chữ số tận cùng hợp thành 1 số chia hết cho 8 thì số đó chia hết cho 8
A= 2017+2017^2+2017^3+.....+2017^18
- chứng tỏ rằng A chia hết cho 18
- tìm chữ số tận cùng của A
giúp mình với mn ơi
A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120
a) Tính A
b) Chứng tỏ rằng 2A + 3 là lũy thừa của 3
c) Chứng tỏ rằng A chia hết cho 4; 13; 52
d) Tìm chữ số tận cùng của A
a)
\(A=3+3^2+3^3+3^4+...+3^{120}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow2A=3^{121}-3\)
\(\Rightarrow A=\frac{3^{121}-3}{2}\)
b)
\(2A+3\)
\(=3^{121}-3+3\)
\(=3^{121}\)
Mà 3121 là lũy thừa của 3
\(\Rightarrow\) 2A + 3 là lũy thừa của 3.
Bài 3. Cho A = 2 + 23+25+…+ 2101
a) Tổng A có mấy số hạng;
b) Chứng minh rằng 3A + 2 = 2103;
c) Chứng tỏ rằng A chia hết cho 2 và 21.
d*) Tìm chữ số tận cùng của A
a) Tổng A có số số hạng là:
`(101-1):1+1=101`(số hạng)
b) `A=2+2^3 +2^5 +...+2^101`
`2^2 A=2^3 +2^5 +2^7 +...+2^103`
`4A-A=2^3 +2^5 +2^7 +...+2^103 -2-2^3 -2^5 -...-2^101`
`3A=2^103 -2`
`=>3A+2=2^103 -2+2=2^103`
c) `A=2+2^3 +2^5 +...+2^101`
`A=2(1+2^2 +2^4 +...+2^100)⋮2`
`A=2+2^3 +2^5 +...+2^101`
`A=2(1+2^2 +2^4)+...+2^97 .(1+2^2 +2^4)`
`A=2.21+...+2^97 .21`
`A=21(2+...+2^97)⋮21`
2: a) Chứng tỏ rằng 37 là ước của số có dạng aaabbb
b) Tìm số tự nhiên a, biết rằng 332 chia cho a thì dư 17, còn khi chia cho 555 cho a thì được số dư là 15.
c) Cho A = 1 + 4 + 42 + 43 + ... + 411 . Chứng minh rằng A chia hết cho 21
d) Chứng tỏ rằng: 1033 + 8 chia hết cho 18.
Bài 3: Cần dùng tất cả bao nhiêu chữ số để đánh số trang của quyển sách dày 199 trang? (bắt đầu từ trang số 1)
2. b)
Vì 332 chia a dư 17 nên ( 332-17) \(⋮\)a => 315\(⋮\)a
Vì 555 chia a dư 15 nên ( 555-15)\(⋮\)a =>540\(⋮\)a
Vì 315\(⋮\)a mà 540\(⋮\)a nên a \(\in\)ƯCLN( 315;540)
315= 32.5.7
540= 22..33.5
ƯCLN(315;540) =5.32= 45
Vậy...
Ko chắc
2
a) ta có : aaa . bbb
=a . 111 . b . 111
=a . 37.3 .b .111
=> a.37.3.b.111 chia hết cho 37 hay aaa.bbb chia hết cho 37
mình nghĩ thế , ko chắc đúng đâu nhé
a,Chứng tỏ rằng : 5!+6!+7!+...+100! chia hết cho 10
b,Tìm chữ số tận cùng của dãy : 1!+2!+....+2002!
a, Tìm số tự nhiên x sao cho
6x chia hết cho 2x + 1
b, Cho A = 1 + 4 + 42 + 43 + ... + 459
Chứng tỏ rằng A chia hết cho 7
\(b,A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...\left(4^{57}+4^{58}+4^{59}\right)\\ A=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\\ A=\left(1+4+4^2\right)\left(1+4^3+...+4^{57}\right)\\ A=21\left(1+4^3+...+4^{57}\right)⋮7\)
a: \(\Leftrightarrow2x+1\in\left\{1;3\right\}\)
hay \(x\in\left\{0;1\right\}\)