Những câu hỏi liên quan
NQ
Xem chi tiết
TS
Xem chi tiết
CT
Xem chi tiết
NN
Xem chi tiết
NP
Xem chi tiết
NQ
Xem chi tiết
VT
Xem chi tiết
H24
18 tháng 3 2017 lúc 20:07

Lớp 6 khó vậy sao?

ab=cd (*) 

a=b=c=d=1 => A=4=2.2 đúng

a=[c,d]

b=[c,d]

a,b,c,d, vai trò như nhau

g/s a=c; b=d 

A=2a^2+2b^2 =2.(a^2+b^2) => A hợp số

với a,b,c,d >1, và a,b,c,d khác nhau

ta có

đảm bảo (*)

( không tồn tại ab=cd khác nhau mà nguyên tố)

g/s a và c có ước lớn nhất p

ta có a=x.p và c=y.p ( do p lớn nhất => (x,y)=1)(**)

từ ab=cd=> x.p.b=y.p.d

từ (**)=> b=y.q và d=x.q

thay hết vào A

A=x^n .p^n+y^n.q^n^n+y^n.p^n+x^n.q^n =x^n(p^n+q^n)+y^n(p^n+q^n)=(x^n+y^n)(p^n+q^n)

A=B.C --> dpcm 

Bình luận (0)
ZZ
25 tháng 10 2018 lúc 20:46

ko hiểu

Bình luận (0)
ZZ
25 tháng 10 2018 lúc 21:03

gọi \(d'\)là \(ƯCLN\left(a,c\right)\)

\(\Rightarrow a=d'p;b=d'q;\left(m,n\right)=1;p,q\inℕ^∗\)

\(ab=cd\Rightarrow d'bp=d'dq\Rightarrow bp=dq\)

Mà     \(\left(p,q\right)=1\Rightarrow b⋮q\)

Đặt \(b=qk\)do đó \(d=pk\)\(k\inℕ^∗\)

Ta có:\(A=d'^n\cdot p^n+q^n\cdot k^n+d'^n\cdot q^n+p^n\cdot k^n\)

              \(=d'^n\cdot p^n+d'^n\cdot q^n+q^n\cdot k^n+p^n\cdot k^n\)

            \(=d'^n\left(p^n+q^n\right)+k^n\left(p^n+q^n\right)\)

             \(=\left(d'^n+k^n\right)\left(p^n+q^n\right)>0\)

\(\Rightarrowđpcm\)

Bình luận (0)
AT
Xem chi tiết
ND
8 tháng 2 2021 lúc 11:49

Ta có: \(ab=cd\Leftrightarrow\frac{a}{c}=\frac{d}{b}\)

Đặt \(\frac{a}{c}=\frac{d}{b}=k\left(k\inℕ\right)\)

Ta xét 2 TH sau:

Nếu k = 1 => \(\hept{\begin{cases}a=c\\b=d\end{cases}}\) \(\Rightarrow A=a^n+b^n+c^n+d^n=2\left(a^n+b^n\right)\) chia hết cho 2 và lớn hơn 2

=> A là hợp số

Nếu k khác 1 thì ta có: \(\hept{\begin{cases}a=ck\\d=bk\end{cases}\left(k\inℕ^∗\right)}\)

Thay vào: \(A=a^n+b^n+c^n+d^n=\left(ck\right)^n+b^n+c^n+\left(bk\right)^n\)

\(=c^n\left(k^n+1\right)+b^n\left(k^n+1\right)=\left(b^n+c^n\right)\left(k^n+1\right)\) là hợp số

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
8 tháng 2 2021 lúc 11:52

=> đpcm ( ngại trình bày)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NB
23 tháng 9 2021 lúc 8:59

khó quá.chịu

Bình luận (0)
 Khách vãng lai đã xóa
SH
24 tháng 9 2021 lúc 14:08
Hdhxgxgxgxhxhxhxyxhxhchxyxhxhhchfufyfyfududufufufjfjfjfjfufifigivncjvkfuvjgugugjfugigkgkgkgofififickvigjgkfkgigkgigfkgkgkgkgigififjfjcjfffyrnfbumt sự iudydydhxfu⁹jfydutditsydtxskstsltdytdutstjsgjzutlxzudtusutzutzc . ủy yydgjsjgsjdjgsutstitidgkdlflufofkycgkdhkxhkdtisffffjlxiydtusutjgjynvjydlgdtusultstlusltualutsutslgskoykraoyrsoykfakfyalyfslhfosfhkssryayoozysrusrusu
Bình luận (0)
 Khách vãng lai đã xóa