Tìm số nguyên x,y
x + xy + y=9
1 . Tìm số nguyên tố xy (x>y>0) sao cho: xy - yx là số chính phương
Tìm số nguyên tố xy (x>y>0) sao cho xy - yx là số chính phương ( xy có gạch đầu nha)
1) Cho a+b=9. Tính 0,a(b)+0,b(a)
2) Tìm x;y biết 0,xy(x) - 0,yx(y) = 0,4(5) và xy + yx= 99 ( 0,xy(x)-0,yx(y) và xy + yx có gạch ngang trên đầu)
1) Cho a+b=9. Tính 0,a(b)+0,b(a)
2) Tìm x;y biết 0,xy(x) - 0,yx(y) = 0,4(5) và xy + yx= 99 ( 0,xy(x)-0,yx(y) và xy + yx có gạch ngang trên đầu)
1) Cho a+b=9. Tính 0,a(b)+0,b(a)
2) Tìm x;y biết 0,xy(x) - 0,yx(y) = 0,4(5) và xy + yx= 99 ( 0,xy(x)-0,yx(y) và xy + yx có gạch ngang trên đầu)
tìm các sô nguyên duơng x và y sao cho xy+yx=100
refer
https://hoc24.vn/cau-hoi/giup-voi-moi-nguoi-tim-tat-ca-cac-so-duong-x-va-y-biet-xy-yx-100.205153185010
x^(y) + y^(x) = 100
x=1 => y =99 nhận (x;y)= (1;99)
x=2 => y phải chẵn và nhỏ hơn 7
y=6 => 2^6 +6^2 =100 => nhận (x;y) =(2:6) ;
y=2;4 =>VT <100 loại
x=3 => y phải lẻ và nhỏ hơn 4
y=1; 3 => 3^3 +3^3 <100 loại
x; y vai trò như nhau
nghiệm
(x;y) = (1;99);(99;1);(2:6) ;(6;2)
BẠN THAM KHẢO NHA
tìm số nguyên tố xy(x>y>0) sao cho xy-yx là một số chính phương
ai lam dug mik tick cho nhé
hihihihihihihihihi..................
Đã ntố lại thêm đk (y>0) bạn lấy đề ở sách nào vậy: port tên sách, tác giả lên để mọi nguoi biết tránh xa ra
Nto bé nhất là 2: => đk y>0 không hợp lý (thừa) => nguwoif biên soạn sách không chuẩn. chứ mình không nói cái đề sai
Tìm số nguyên:
a, xy - y + x = 9
b, xy - y - x = 9
a) \(xy-y+x=9\)
\(\Rightarrow x\left(x-y\right)+x=9\)
\(\Rightarrow x\left(x-y+1\right)=9\)
\(\Rightarrow x;\left(x-y+1\right)\in\left\{-1;1;-3;3;-9;9\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-1;9\right);\left(1;-7\right);\left(-3;-1\right);\left(3;1\right);\left(-9;-7\right);\left(9;9\right)\right\}\)
\(xy\) - \(y\) + \(x\) = 9
(\(xy\) + \(x\)) - \(y\) = 9
\(x\)(\(y\) + 1) - \(y\) = 9
\(x\)(\(y+1\)) = 9 + \(y\)
\(x\) = \(\dfrac{9+y}{y+1}\) ( y \(\ne\) -1)
\(x\in\) z \(\Leftrightarrow\) 9 + \(y\) ⋮ \(y\) + 1
\(\Leftrightarrow\) \(y\) + 1 + 8 \(⋮\) \(y\) + 1
8 \(⋮\) \(y\) + 1
\(y\) + 1 \(\in\) { -8; -4; -2; -1; 1; 2; 4; 8}
\(y\) \(\in\) { -9; -5; -3; -2; 0; 1; 3; 7}
Lập bảng ta có:
y | -9 | -5 | -3 | -2 | 0 | 1 | 3 | 7 |
\(x=\dfrac{y+9}{y+1}\) | 0 | -1 | -3 | -7 | 9 | 5 | 3 | 2 |
(\(x;y\)) | (0;-9) | (-1; -5) | (-3; -3) | (-7; -2) | (9;0) | (5;1) | (3;3) | (2;7) |
Vậy các cặp (\(x\); y) thỏa mãn đề bài lần lượt là:
(\(x;y\)) =(0; -9); (-1; -5); (-3; -3); (-7; -2); (9; 0); (5; 1) (3; 3); (2; 7)
Tìm số nguyên tố xy (x>y>o) sao cho xy - yx là số chính phương.
Chứng minh rằng với mọi số nguyên thì x,y thì
a) x(x^2+x)+x(x+1)chia hết cho (x+1) b) xy^2-yx^2+xy chia hết cho xy
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy