Những câu hỏi liên quan
H24
Xem chi tiết
TH
Xem chi tiết
TB
Xem chi tiết
2U
2 tháng 12 2019 lúc 13:57

a)

Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau

\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)

Áp dụng định lý Ta-lét:

\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)

\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)

Maf \(CI=DK\)(cmt)

\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD

b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:

\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)

\(\Rightarrow AB^2=EF.CD\)( đpcm ) 

Bình luận (0)
 Khách vãng lai đã xóa
PK
Xem chi tiết
H24
2 tháng 11 2015 lúc 22:05

vì AB = CD ; AD = BC 

nên ABCD là hình bình hành 

suy ra AB // CD VÀ BC // AD

Bình luận (0)
LV
12 tháng 7 2021 lúc 12:39

Vì AB = CD ; AD = BC 

Nên ABCD là hình bình hành 

Suy ra AB // CD VÀ BC // AD

Hok tốt

Bình luận (0)
 Khách vãng lai đã xóa
SF
Xem chi tiết
H24
7 tháng 2 2018 lúc 20:22

Hình thì dễ rồi you tự vẽ nha

Ta có ; OM // AB ( gt )

Theo hệ quả của định lý Ta lét ta có :

\(\Rightarrow\)\(\frac{OM}{AB}=\frac{OD}{BD}\)( 1 )

ON // AB ( gt )

\(\Rightarrow\)\(\frac{ON}{AB}=\frac{OC}{AC}\)( 2 )

AB // CD ( gt )

\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{OA}\)\(\Rightarrow\)\(\frac{OD}{OB+OD}=\frac{OC}{OC+OA}\)

\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{AC}\)( 3 )

Từ ( 1 ) , ( 2 ) , ( 3 )

\(\Rightarrow\)\(\frac{OM}{AB}=\frac{ON}{AB}\)\(\Rightarrow\)\(OM=ON\left(ĐPCM\right)\)

Vậy \(OM=ON\)

Bình luận (0)
ND
7 tháng 2 2018 lúc 20:23

ÁP DỤNG ĐỊNH LÍ TA-LÉT

\(\frac{OM}{CD}=\frac{AO}{AD}=\frac{OB}{CB}=\frac{ON}{CD}\)

Bình luận (0)
LN
Xem chi tiết
LN
Xem chi tiết
VN
Xem chi tiết
CH
27 tháng 6 2016 lúc 15:46

?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng f_1: ?o?n th?ng [A_1, C] ?o?n th?ng h: ?o?n th?ng [A, D] ?o?n th?ng i: ?o?n th?ng [B, C] ?o?n th?ng j: ?o?n th?ng [A, C] ?o?n th?ng k: ?o?n th?ng [B, D] ?o?n th?ng l: ?o?n th?ng [A, M] ?o?n th?ng m: ?o?n th?ng [A, N] A = (0.14, 4.82) A = (0.14, 4.82) A = (0.14, 4.82) B = (5.32, 4.88) B = (5.32, 4.88) B = (5.32, 4.88) D = (3.64, 1.1) D = (3.64, 1.1) D = (3.64, 1.1) C = (8.82, 1.16) C = (8.82, 1.16) C = (8.82, 1.16) ?i?m M: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a f_1 ?i?m N: Trung ?i?m c?a f_1 ?i?m N: Trung ?i?m c?a f_1 ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m E: Giao ?i?m c?a k, l ?i?m F: Giao ?i?m c?a k, m ?i?m F: Giao ?i?m c?a k, m ?i?m F: Giao ?i?m c?a k, m ?i?m O: Giao ?i?m c?a j, k ?i?m O: Giao ?i?m c?a j, k ?i?m O: Giao ?i?m c?a j, k

a. Do AB//CD nên góc ABD = BDC, ADB = CBD. Suy ra \(\Delta ABD=\Delta CDB\left(g-c-g\right)\Rightarrow AB=CD,AD=BC\)

b. Dễ thấy \(\Delta AOB=\Delta COD\left(g-c-g\right)\Rightarrow OA=OC,OB=OD\)

c. Xét tam giác ABC có AM và BO là các đường trung tuyến nên E là trọng tâm, vậy OB = 2EO.

Tương tự DF=2FO. Mà OD = OB. Vậy BE = EF = DF.

Bình luận (0)
XT
Xem chi tiết