uu+v=9,uv=-90
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 32 , uv = 231
b) u + v = -8, uv = -105
c) u + v = 2, uv = 9
a) S = 32 ; P = 231 ⇒ S 2 – 4 P = 322 – 4 . 231 = 100 > 0
⇒ Tồn tại u và v là hai nghiệm của phương trình: x 2 – 32 x + 231 = 0 .
Ta có: Δ = ( - 32 ) 2 – 4 . 231 = 100 > 0
⇒ PT có hai nghiệm:
Vậy u = 21 ; v = 11 hoặc u = 11 ; v = 21.
b) S = -8; P = -105 ⇒ S 2 – 4 P = ( - 8 ) 2 – 4 . ( - 105 ) = 484 > 0
⇒ u và v là hai nghiệm của phương trình: x 2 + 8 x – 105 = 0
Ta có: Δ ’ = 4 2 – 1 . ( - 105 ) = 121 > 0
Phương trình có hai nghiệm:
Vậy u = 7 ; v = -15 hoặc u = -15 ; v = 7.
c) S = 2 ; P = 9 ⇒ S 2 – 4 P = 2 2 – 4 . 9 = - 32 < 0
⇒ Không tồn tại u và v thỏa mãn.
Tìm 2 số u và v trong mỗi trường hợp sau:
a, u+v=32, uv=231, b,u+v=-8, uv=-105, c, u+v=2, uv=9
Tức là như thế này:
a/ \(u+v=32\Rightarrow u=32-v\)hoặc \(v=32-u\)(Cái này tùy bạn chọn nhưng mình chọn cái 1)
Ta có: \(uv=231\)
\(\Leftrightarrow\left(32-v\right)v=231\)
\(\Leftrightarrow32v-v^2-231=0\)
\(\Leftrightarrow-v^2+32v-231=0\)
Sau đó bạn giải \(\Delta\)tìm được \(v\)và có \(v\)rồi thì ra cái còn lại.
Các câu sau tương tự không có gì hết
a) từ tổng u+v=32 => u=32-v rồi thay u=32-v vào uv=231 sẽ tìm ra u;v
các câu sau làm tương tự
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v =32; uv = 231; b) u + v = -8; uv = -105;
c) u + v = 2; uv = 9.
a) u và v là nghiệm của phương trình: x2 – 32x + 231 = 0
∆’ = 162 – 231 = 256 – 231 = 25, \(\sqrt{\text{∆}'}\) = 5 . x1 = 21, x2 = 11
Vậy u = 21, v = 11 hoặc u = 11, v = 21
b) u, v là nghiệm của phương trình:
x2 + 8x – 105 = 0, ∆’ = 16 + 105 = 121, \(\sqrt{\text{∆}'}\) = 11 . x = -4 + 11 = 7
x2 = -4 – 11 = -15
Vậy u = 7, v = -15 hoặc u = -15, v = 7
c) Vì 22 – 4 . 9 < 0 nên không có giá trị nào của u và v thỏa mãn điều kiện đã cho.
a) u và v là nghiệm của phương trình: x2 – 32x + 231 = 0
∆’ = 162 – 231 = 256 – 231 = 25, √∆' = 5 . x1 = 21, x2 = 11
Vậy u = 21, v = 11 hoặc u = 11, v = 21
b) u, v là nghiệm của phương trình:
x2 + 8x – 105 = 0, ∆’ = 16 + 105 = 121, √∆' = 11 . x = -4 + 11 = 7
x2 = -4 – 11 = -15
Vậy u = 7, v = -15 hoặc u = -15, v = 7
c) Vì 22 – 4 . 9 < 0 nên không có giá trị nào của u và v thỏa mãn điều kiện đã cho.
Tìm hai số u và v trong mỗi trường hợp sau:
u + v = 2, uv = 9
S = 2 ; P = 9 ⇒ S2 – 4P = 22 – 4.9 = -32 < 0
⇒ Không tồn tại u và v thỏa mãn.
cho 2 số u và v biết uv = 9 và u + v = 22 khi đó U và v là hai nghiệm của phương trình
rút gọn
B=\(\dfrac{2u+\sqrt{uv}-3v}{2u-5\sqrt{uv}+3v}\) với \(u\ge\)0,\(v\ge0\) và\(u\ne\dfrac{9}{4}v\)
\(B=\dfrac{2u+\sqrt{uv}-3v}{2u-5\sqrt{uv}+3v}\)
\(=\dfrac{2u+3\sqrt{uv}-2\sqrt{uv}-3v}{2u-2\sqrt{uv}-3\sqrt{uv}+3v}\)
\(=\dfrac{\sqrt{u}.\left(2\sqrt{u}+3\sqrt{v}\right)-\sqrt{v}.\left(2\sqrt{u}+3\sqrt{v}\right)}{2\sqrt{u}.\left(\sqrt{u}-\sqrt{v}\right)-3\sqrt{v}.\left(\sqrt{u}-\sqrt{v}\right)}\)
\(=\dfrac{\left(2\sqrt{u}+3\sqrt{v}\right)\left(\sqrt{u}-\sqrt{v}\right)}{\left(\sqrt{u}-\sqrt{v}\right)\left(2\sqrt{u}-3\sqrt{v}\right)}\)
\(=\dfrac{2\sqrt{u}+3\sqrt{v}}{2\sqrt{u}-3\sqrt{v}}\\ =\dfrac{4u+12\sqrt{uv}+9v}{4u-9v}\)
Cho \(u = u(x),v = v(x)\) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Phát biểu nào sau đây là đúng?
A. \((uv)' = u'v'\)
B. \((uv)' = uv'\)
C. \((uv)' = u'v\)
D. \((uv)' = u'v + uv'\)
Cái này theo công thức đạo hàm thôi
Chọn D
Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 42, uv = 441
b) u + v = -42, uv = -400
c) u – v = 5, uv = 24
a) S = 42; P = 441 ⇒ S 2 – 4 P = 42 2 – 4 . 441 = 0
⇒ u và v là hai nghiệm của phương trình: x 2 – 42 x + 441 = 0
Có: Δ ’ = ( - 21 ) 2 – 441 = 0
⇒ Phương trình có nghiệm kép x 1 = x 2 = - b ’ / a = 21 .
Vậy u = v = 21.
b) S = -42; P = -400 ⇒ S 2 – 4 P = ( - 42 ) 2 – 4 . ( - 400 ) = 3364 > 0
⇒ u và v là hai nghiệm của phương trình: x 2 + 42 x – 400 = 0
Có Δ ’ = 21 2 – 1 . ( - 400 ) = 841
⇒ Phương trình có hai nghiệm phân biệt:
Vậy u = 8; v = -50 hoặc u = -50; v = 8.
c) u – v = 5 ⇒ u + (-v) = 5
u.v = 24 ⇒ u.(-v) = -uv = -24.
Ta tìm u và –v. Từ đó, ta dễ dàng tính được u và v.
S= u + (-v) = 5; P = u. (-v) = -24 ⇒ S 2 – 4 P = 5 2 – 4 . ( - 24 ) = 121 > 0
⇒ u và –v là hai nghiệm của phương trình: x 2 – 5 x – 24 = 0
Có Δ = ( - 5 ) 2 – 4 . 1 . ( - 24 ) = 121
⇒ Phương trình có hai nghiệm phân biệt
⇒ u = 8; -v = -3 hoặc u = -3; -v = 8
⇒ u = 8; v = 3 hoặc u = -3; v = -8.
Tìm hai số u và v trong mỗi trường hợp sau :
a) \(u+v=14,uv=40\)
b) \(u+v=-7,uv=12\)
c) \(u+v=-5,uv=-24\)
d) \(u+v=14,uv=19\)
e) \(u-v=10,uv=24\)
f) \(u^2+v^2=85,uv=18\)
- Nếu u + v = -11 và uv = 18 thì u và v là hai nghiệm của phương trình \(x^2+11x+18=0\). Suy ra u = - 2, v = -9 hoặc u = -9; v = -2
Tìm hai số u và v trong mỗi trường hợp sau:
a) u+v=42,uv=441;
b)u+v=-42,uv=-400;
c)u-v=5,uv=24