Cho a,b,c là các số nguyên dương. CMR a+b+√(ab+c^2) không phải là số nguyên tố
cHo các số nguyên dương khác nhau thỏa mãn:a là ước của b+c+bc,b là ước của a+c+ac,c là ước của a+b+ab .cmr a,b,c không đồng thời là số nguyên tố
Cho các số nguyên dương a > b thỏa mãn: ab − 1 và a + b nguyên tố cùng
nhau; ab + 1 và a − b nguyên tố cùng nhau. Chứng minh rằng: (a + b)^2 + (ab-1)^2 không phải là một số chính phương.
thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc
Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p
\(\Rightarrow a^2-b^2⋮p\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).
+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)
+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)
Do đó \(\left(a^2+1,b^2+1\right)=1\).
Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)
Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).
Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.
Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.
Vậy ....
Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: (a+b)c=ab.
Xét tổng M=a+b có phải là số chính phương không ? Vì sao?
Gọi UCLN của a-c và b-c là d
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương
tích mik nhé
Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: (a+b)c=ab.
Xét tổng M=a+b có phải là số chính phương không ? Vì sao?
\
Gọi UCLN của a-c và b-c là d
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a-c và b-c là hai số chính phương. Đặt a-c = p2; b-c = q2
( p; q là các số nguyên)
c2 = p2q2c = pq a+b = (a- c) + (b – c) + 2c = ( p+ q)2 là số chính phương
Gọi UCLN của a‐c và b‐c là d
mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1
Do đó a‐c và b‐c là hai số chính phương. Đặt a‐c = p2; b‐c = q2
﴾ p; q là các số nguyên﴿
c2 = p2q2c = pq a+b = ﴾a‐ c﴿ + ﴾b – c﴿ + 2c = ﴾ p+ q﴿2 là số chính phương
1.Cho a,b,c là các số nguyên tố thoả mãn: ab + 1 = c. CMR: a2+ c hoặc b2+ c là số chính phương
2.Cho m,n là các số nguyên dương thoả mãn: m2+n2+m⋮mn. CMR: m là một số chính phương
cho a, b, c > 0. CMR: \(a+b+2\sqrt{ab+c^2}\)không phải là số nguyên tố
cho số nguyên dương a,b,c. CMR \(a+b+2\sqrt{ab+c^2}\)không thể là số nguyên tố.
Giúp em với mọi người ơi. cảm ơn mọi người nhiều lắm ạ
Để cho \(a+b+2\sqrt{ab+c^2}\)là xô nguyên tô thì trươc hêt \(\sqrt{ab+c^2}\)phải là xô nguyên đã.
\(\Rightarrow ab+c^2=d^2\)
\(\Leftrightarrow ab=\left(c+d\right)\left(c-d\right)\)
\(\Rightarrow\)a, b phải cùng tinh chẵn lẻ.
Ta thây rằng a, b cùng tinh chẵn lẻ thì
\(a+b+2\sqrt{ab+c^2}\) chia hêt cho 2
Lại co: \(a+b+2\sqrt{ab+c^2}>2\)
Vậy \(a+b+2\sqrt{ab+c^2}\) không thể là xô nguyên tô được.
Bài trên chỗ \(\left(c+d\right)\left(c-d\right)\)xửa lại thành \(\left(c+d\right)\left(d-c\right)\)lỡ tay bâm nhầm.
Để cho \(a+b+2\sqrt{ab+c^2}\) là xô nguyên tố thì trước hết \(\sqrt{ab+c^2}\)phải là xô nguyên đã.
\(\Rightarrow ab+c^2=d^2\)
\(\Leftrightarrow ab=\left(c+d\right)\left(d-c\right)\)
\(\Rightarrow a,b\)phải cùng tính chẵn lẻ.
Ta thấy rằng \(a,b\)cùng tính chẵn lẻ thì:
\(a+b+2\sqrt{ab+c^2}\)chia hết cho 2.
Lại có: \(a+b+2\sqrt{ab+c^2}>2\)
Vậy \(a+b+2\sqrt{ab+c^2}\)không thể xô nguyên tố được.
Cho b,c là các số nguyên dương, a là số nguyên tố thỏa mãn a2 = b2 + c2 . CMR: c < b và a = b + 1
*)\(b^2+c^2=a^2\)
\(\Leftrightarrow b^2=a^2-c^2\)
\(\Leftrightarrow b=\sqrt{a^2-c^2}\)
Ta có: \(\sqrt{a^2-c^2}>c\Leftrightarrow a^2-c^2>c^2\)
\(\Leftrightarrow a^2>2c^2\)(luôn đúng)
=> c<b
*) \(a^2=b^2+c^2\Leftrightarrow\hept{\begin{cases}c=3\\b=4\\a=5\end{cases}\Leftrightarrow c=b+1}\)
Cho các số nguyên dương a,b,c thỏa mãn: a+b+c=2016
CMR: giá trị biểu thức sau không phải là một số nguyên:
A=a:(2016-c)+b:(2016-a)+c:(2016-b)
Cho a,b,c là các số nguyên dương thỏa mãn điều kiện \(\sqrt{a}+\sqrt{b}=\sqrt{c}\). CMR nếu a,b là 2 số nguyên tố cùng nhau thì a,b,c đều là các số chính phương