phân tích đa thức -x^2 - 2x + 8 thành nhân tử
phân tích đa thức thành nhân tử x^3+x^2-2x-8
x^3+x^2-2x-8
= (x-2)(x^2+3x+4)
nah bạn chúc bạn học tốt nha
x3 + x2 - 2x - 8
= ( x3 - 8 ) + ( x2 - 2x )
= ( x - 2 ) . ( x2 + 2x + 4 ) + x ( x - 2 )
= ( x - 2 ) .( x2 + 2x + 4 + x )
= ( x-2 ) . ( x2 + 3x + 4 )
x^3+x^2-2x-8
= ( x^3 - 8) + ( x^2 - 2x )
= ( x - 2)( x^2 + 2x + 4) + x( x - 2 )
=( x - 2)( x^2 + 2x + 4 + x)
=( x - 2)( x^2 + 3x + 4 )
Phân tích đa thức thành nhân tử:
\(x^3-8+2x\left(x-2\right)\)
\(x^3-8+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\\ =\left(x-2\right)\left(x^2+2x+4+2x\right)=\left(x-2\right)\left(x^2+4x+4\right)\\ =\left(x-2\right)\left(x+2\right)^2\)
=\(\left(x-2\right)\left(x^2+2x+4\right)+2x\left(x-2\right)\)
=\(\left(x-2\right)\left(x^2+4x+4\right)\)
=\(\left(x-2\right)\left(x+2\right)^2\)
Phân tích đa thức thành nhân tử:
x^2+2x-8
x^2 + 2x - 8, phân tích đa thức thành nhân tử(10 cách)
phân tích đa thức x^2+2x-8 thành nhân tử
x^2+2x-8
=x^2+2x+1-9
=(x+1)^2-9
=(x+1-3)(x+1+3)
=(x-2)(x+4)
Phân tích đa thức thành nhân tử:
\(a,x^4-2x^3+x^2-2x\)
\(b,x^4+x^3-8x-8\)
a: \(x^4-2x^3+x^2-2x\)
\(=\left(x^4-2x^3\right)+\left(x^2-2x\right)\)
\(=x^3\left(x-2\right)+x\left(x-2\right)\)
\(=x\left(x-2\right)\left(x^2+1\right)\)
b: \(x^4+x^3-8x-8\)
\(=\left(x^4+x^3\right)-\left(8x+8\right)\)
\(=x^3\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-8\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(x^2+2x+4\right)\)
bài 1: Phân tích đa thức thành nhân tử : x^2-6x+8
bài 2: Phân tích đa thức thành nhân tử : x^8+x^7+1
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
Phân tích đa thức thành nhân tử
2x2-x+8
Phân tích đa thức thành nhân tử : x3+x2+2x+8
\(x^3+x^2+2x+8\)
\(=x^3+2x^2-x^2-2x+4x+8\)
\(=x^2\left(x+2\right)-x\left(x+2\right)+4\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-x+4\right)\)
Phân tích đa thức thành nhân tử a) x^4+x^2+2x+6 b) x^8+3x^4+4
a: \(x^4+x^2+2x+6\)
\(=x^4-2x^3+3x^2+2x^3-4x^2+6x+2x^2-4x+6\)
\(=\left(x^2-2x+3\right)\left(x^2+2x+2\right)\)