Ẩn danh

Những câu hỏi liên quan
PB
Xem chi tiết
TQ
Xem chi tiết
NH
Xem chi tiết
LH
27 tháng 10 2018 lúc 16:21

ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{3+x}=a;\sqrt{6-x}=b\left(a,b\ge0\right)\),ta có

\(\hept{\begin{cases}a+b-ab=3\left(1\right)\\a^2+b^2=9\end{cases}\Rightarrow\hept{\begin{cases}2a+2b-2ab=6\\\left(a+b\right)^2-2ab=9\end{cases}}}\)

\(\Rightarrow\left(a+b\right)^2-2\left(a+b\right)=3\Rightarrow\left(a+b\right)^2-2\left(a+b\right)-3=0\)

\(\Rightarrow\left(a+b-3\right)\left(a+b+1\right)=0\)

Do \(a,b\ge0\)nên a+b+1>0

\(\Rightarrow a+b-3=0\)\(\Rightarrow a+b=3\)thay vào (1) ta được \(ab=0\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=3\end{cases}}}\)hoặc \(\hept{\begin{cases}a=3\\b=0\end{cases}}\)

Sau đó bn tự thay vào rồi giải tiếp nhé

Bình luận (0)
LV
Xem chi tiết
CH
29 tháng 9 2017 lúc 10:17

Đặt \(t=\sqrt[3]{x+6}\Rightarrow x+6=t^3\Rightarrow x=t^3-6\)

Phương trình trở thành \(x^3-\sqrt[3]{6+t}=6\)

Tiếp tục đặt \(h=\sqrt[3]{6+t}\Rightarrow t=h^3-6\)

Phương trình trở thành \(x^3-h=6\Rightarrow h=x^3-6\)

Từ đó ta có hệ 3 ẩn hoán vị vòng quanh \(\hept{\begin{cases}x=t^3-6\\t=h^3-6\\h=x^3-6\end{cases}}\)

Do x, t và h bình đẳng trong hệ trên nên ta giả sử x = min {x ; t; h}

Do \(x\le t;x\le h\Rightarrow\hept{\begin{cases}t^3-6\le h^3-6\\t^3-6\le x^3-6\end{cases}}\Rightarrow\hept{\begin{cases}t\le h\\t\le x\end{cases}}\)

Suy ra x = t = h.

Phương trình trở thành \(x=x^3-6\Rightarrow x^3-x-6=0\Rightarrow x=2.\) 

Vậy phương trình có nghiệm x = 2.

Bình luận (0)
LV
28 tháng 9 2017 lúc 21:08
ai lm giúp mình vs, = 6 thui nhá
Bình luận (0)
NH
Xem chi tiết
CH
22 tháng 9 2016 lúc 15:57

ĐK: \(-3\le x\le6.\)

Đặt \(\hept{\begin{cases}\sqrt{3+x}=a\\\sqrt{6-x}=b\end{cases}\Rightarrow\hept{\begin{cases}a^2+b^2=9\\a+b-ab=3\end{cases}\Rightarrow}\hept{\begin{cases}\left(a+b\right)^2-2ab=9\\\left(a+b\right)-ab=3\end{cases}}}\)

Đặt \(\hept{\begin{cases}a+b=u\\ab=v\end{cases}\left(u,v\ge0\right)\Rightarrow\hept{\begin{cases}u^2-2v=9\\u-v=3\end{cases}\Rightarrow}\hept{\begin{cases}u^2-2u-3=0\\v=u-3\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}u=3\\v=0\end{cases}\Rightarrow\hept{\begin{cases}a+b=3\\ab=0\end{cases}}}\)

Th1: \(\hept{\begin{cases}a=3\\b=0\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=3\\\sqrt{6-x}=0\end{cases}\Rightarrow}x=6\left(tmđk\right).}\)

Th2: \(\hept{\begin{cases}a=0\\b=3\end{cases}\Rightarrow\hept{\begin{cases}\sqrt{3+x}=0\\\sqrt{6-x}=3\end{cases}\Rightarrow}x=-3}\left(tmđk\right).\)

Vậy x = 6 hoặc x = -3.

Bình luận (0)
TD
21 tháng 9 2016 lúc 21:39

kết quả phương trình là x=6

Bình luận (0)
VS
Xem chi tiết
AN
11 tháng 9 2018 lúc 16:47

Đặt \(\hept{\begin{cases}\sqrt[6]{x-3}=a\\\sqrt[6]{x-7}=b\end{cases}}\)

\(\Rightarrow a^2+b^2-6ab=0\)

Dễ thây a  = 0 không là nghiệm.

Đặt \(b=ta\)

\(\Rightarrow a^2+t^2a^2-6ta^2=0\)

\(\Leftrightarrow t^2-6t+1=0\)

Làm nôt

Bình luận (0)
NT
Xem chi tiết
NL
6 tháng 8 2021 lúc 21:44

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

Bình luận (0)
NL
6 tháng 8 2021 lúc 21:46

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

Bình luận (0)
NL
6 tháng 8 2021 lúc 21:49

3.

ĐKXĐ: \(x\ge-1\)

\(x^2+x-12+12\left(\sqrt{x+1}-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\dfrac{12\left(x-3\right)}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\dfrac{12}{\sqrt{x+1}+2}\right)=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Bình luận (0)
NA
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết