Những câu hỏi liên quan
NT
Xem chi tiết
AN
29 tháng 7 2017 lúc 9:27

Ta có:

\(VT=\sqrt{3x^2-6x+19}+\sqrt{x^2-2x+26}\)

\(=\sqrt{3\left(x-1\right)^2+16}+\sqrt{\left(x-1\right)^2+25}\ge4+5=9\)

\(VP=8-x^2+2x=9-\left(x-1\right)^2\le9\)

Dấu = xảy ra khi \(x=1\)

Bình luận (0)
XC
Xem chi tiết
XP
Xem chi tiết
GG
21 tháng 4 2022 lúc 22:39

\(9x^2-1+\left(3x-1\right).\left(x+2\right)=0\)

\(\Leftrightarrow9x^2-1+3x^2+6x-x-2=0\)

\(\Leftrightarrow9x^2+3x^2+6x-x=0+1+2\)

\(\Leftrightarrow12x^2+5x=3\)

\(\Leftrightarrow12x^2+5x-3=0\)

\(\Leftrightarrow12x^2-4x+9x-3=0\)

\(\Leftrightarrow4x\left(3x-1\right)+3\left(3x-1\right)\)

\(\Leftrightarrow\left(4x+3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{4}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy tập nghiệm phương trình là S = \(\left\{\dfrac{-3}{4};\dfrac{1}{3}\right\}\)

Bình luận (0)
NT
Xem chi tiết
H24
11 tháng 3 2020 lúc 15:29

a) (x + 6)(3x + 1) + x- 36 = 0

<=> 3x2 + x + 18x + 6 + x2 - 36 = 0

<=> 4x2 + 19x - 30 = 0

<=> 4x2 + 24x - 5x - 30 = 0

<=> 4x(x + 6) - 5(x + 6) = 0

<=> (x + 6)(4x - 5) = 0

<=> x + 6 = 0 hoặc 4x - 5 = 0

<=> x = -6 hoặc x = 5/4

Bình luận (0)
 Khách vãng lai đã xóa
NT
11 tháng 3 2020 lúc 16:38

Bài 1 mình đã làm xong rồi, anh em nào giúp mình bài 2 với!

Bình luận (0)
 Khách vãng lai đã xóa
TI
Xem chi tiết
NT
10 tháng 10 2021 lúc 22:17

\(4\left(x+1\right)\left(x^2-x+1\right)-x^3+3x=15\)

\(\Leftrightarrow4x^3+4-x^3+3x-15=0\)

\(\Leftrightarrow3x^3+3x-11=0\)

Đây là phương trình vô tỉ nhé bạn, nên nghiệm rất xấu!

Bình luận (1)
HP
Xem chi tiết
LD
30 tháng 6 2017 lúc 20:23

Bài 2 ; 

Ta có : x2 + 3x 

= x2 + 3x + \(\frac{9}{4}-\frac{9}{4}\)

\(x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà ; \(\left(x+\frac{3}{2}\right)^2\ge\forall x\)

Nên : \(\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\forall x\)

Vậy GTNN của B là : \(-\frac{9}{4}\) khi và chỉ khi x = \(-\frac{3}{2}\)

Bình luận (0)
LG
27 tháng 5 2018 lúc 11:49

a) (3x - 2)(4x + 5) = 0

⇔ 3x - 2 = 0 hoặc 4x + 5 = 0

1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3

2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4

Vậy phương trình có tập nghiệm S = {2/3;−5/4}

b) (2,3x - 6,9)(0,1x + 2) = 0

⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3

2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.

Vậy phương trình có tập hợp nghiệm S = {3;-20}

c) (4x + 2)(x2 +  1) = 0 ⇔ 4x + 2 = 0 hoặc x2 +  1 = 0

1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2

2) x2 +  1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)

Vậy phương trình có tập hợp nghiệm S = {−1/2}

d) (2x + 7)(x - 5)(5x + 1) = 0

⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2

2) x - 5 = 0 ⇔ x = 5

3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5

Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}


 

Bình luận (0)
HT
Xem chi tiết
LD
19 tháng 12 2020 lúc 21:23

\(1+\sqrt{3x+1}=3x\)

⇔ \(\sqrt{3x+1}=3x-1\)

ĐKXĐ : x ≥ 1/3

Bình phương hai vế

⇔ 3x + 1 = 9x2 - 6x + 1

⇔ 9x2 - 6x + 1 - 3x - 1 = 0

⇔ 9x2 - 9x = 0

⇔ 9x( x - 1 ) = 0

⇔ 9x = 0 hoặc x - 1 = 0

⇔ x = 0 ( ktm ) hoặc x = 1 ( tm )

Vậy x = 1

Bình luận (0)
 Khách vãng lai đã xóa
TC
1 tháng 7 2017 lúc 19:27

\(1+\sqrt{3x+1}=3x\left(ĐKXĐ:x\ge-\frac{1}{3}\right)\)

\(\sqrt{3x+1}=3x-1\)

\(\left(\sqrt{3x+1}\right)^2=\left(3x-1\right)^2\)

\(3x+1=9x^2-6x+1\)

\(9x^2-9x=0\)

\(9x\left(x-1\right)=0\)

        \(\Rightarrow\orbr{\begin{cases}9x=0\\x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Bình luận (0)
TM
1 tháng 7 2017 lúc 19:27

đáp án = 1 nha bạn.

Bình luận (0)
PL
Xem chi tiết
H24
30 tháng 3 2020 lúc 12:54

a) x^4 - 3x^3 + 3x - 1 = 0

<=> (x^3 - 2x^2 - 2x + 1)(x - 1) = 0

<=> (x^3 - 3x + 1)(x + 1)(x - 1) = 0

<=> x^3 - 3x + 1 khác 0 hoặc x + 1 = 0 hoặc x - 1 = 0

<=> x + 1 = 0 hoặc x - 1 = 0

<=> x = -1 hoặc x = 1

Bình luận (0)
 Khách vãng lai đã xóa
NU
Xem chi tiết