Những câu hỏi liên quan
H24
Xem chi tiết
H24
20 tháng 6 2021 lúc 15:08

`P=((3+x)/(3-x)-(3-x)/(3+x)+(4x^2)/(x^2-9)):((2x+1)/(x+3)-1)`

`=((4x^2-(3-x)^2-(3+x)^2)/(x^2-9)):((2x+1-x-3)/(x+3))`

`=((4x^2-x^2+6x-9-x^2-6x-9)/(x^2-9)):((x-2)/(x+3))`

`=((2x^2-18)/(x^2-9))*(x+3)/(x-2)`

`=((2(x^2-9))/(x^2-9))*(x+3)/(x-2)`

`=(2x+6)/(x-2)`

Bình luận (1)
LT
20 tháng 6 2021 lúc 15:20

ĐKXĐ: \(x\ne\pm3;x\ne-\dfrac{1}{2};x\ne2\)

\(P=\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{4x^2}{\left(3-x\right)\left(3+x\right)}\right):\dfrac{2x+1-x-3}{x+3}\)

\(=\dfrac{\left(3+x\right)^2-\left(3-x\right)^2-4x^2}{\left(3+x\right)\left(3-x\right)}:\dfrac{x-2}{x+3}\)

\(=\dfrac{\left(3+x-3+x\right)\left(3+x+3-x\right)-4x^2}{\left(x+3\right)\left(3-x\right)}.\dfrac{x+3}{x-2}\)

\(=\dfrac{12x-4x^2}{3-x}\cdot\dfrac{1}{x-2}\)

\(=\dfrac{4x\left(3-x\right)}{3-x}\cdot\dfrac{1}{x-2}\) \(=\dfrac{4x}{x-2}\)

 

Bình luận (0)
H24
20 tháng 6 2021 lúc 15:16

Chắc mình làm tắt quá để mình làm lại bước biến đổi.

`P=((3+x)/(3-x)-(3-x)/(3+x)+(4x^2)/(x^2-9)):((2x+1)/(x+3)-1)`

`=((x-3)/(x+3)+(4x^2)/(x^2-9)-(x+3)/(x-3)):((2x+1-x-3)/(x+3))`

`=((x-3)^2/(x^2-9)+(4x^2)/(x^2-9)-(x+3)^2/(x^2-9)):((x-2)/(x+3))`

`=(((x-3)^2+4x^2-(x+3)^2)/(x^2-9))*(x+3)/(x-2)`

`=(x^2-6x+9+4x^2-x^2-6x-9)/(x^2-9)*(x+3)/(x-2)`

`=(4x^2-12x)/(x^2-9)*(x+3)/(x-2)`

`=(4x(x-3))/((x-3)(x+3))*(x+3)/(x-2)`

`=(4x)/(x+3)*(x+3)/(x-2)`

`=(4x)/(x-2)`

Bình luận (3)
MT
Xem chi tiết
TT
Xem chi tiết
H24
5 tháng 6 2023 lúc 9:57

\(a,P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right)\left(dkxd:x\ge0,x\ne1\right)\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)

\(=\dfrac{\sqrt{x}.\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\dfrac{x-2}{\sqrt{x}}\)

\(b,x=4+2\sqrt{3}\Rightarrow P=\dfrac{\left(4+2\sqrt{3}\right)-2}{\sqrt{4+2\sqrt{3}}}\)

\(=\dfrac{2\sqrt{3}+4-2}{\sqrt{\sqrt{3}^2+2\sqrt{3}+1}}\)

\(=\dfrac{2\sqrt{3}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)}{\left|\sqrt{3}+1\right|}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=2\)

Bình luận (0)
NT
4 tháng 6 2023 lúc 22:09

a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{x-1}\)

\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-2}{\sqrt{x}}\)

b: Khi x=4+2căn 3 thì \(P=\dfrac{2+2\sqrt{3}}{\sqrt{3}+1}=2\)

Bình luận (1)
HK
Xem chi tiết
YN
4 tháng 7 2023 lúc 20:42

Để giải phương trình, ta sẽ thực hiện các bước sau: Bước 1: Giải các phép tính trong phương trình. 32x^(-1) + 2.9x^(-1) = 405(13)^(-1) + 5.(13)^2 + 1 = 1493(31)^(-1) + 5.(31)^2 + 1 = 9314(35)^(-1) Bước 2: Rút gọn các số hạng. 32x^(-1) + 2.9x^(-1) = 405/13 + 5.(13)^2 + 1 = 1493/31 + 5.(31)^2 + 1 = 9314/35 Bước 3: Đưa các số hạng về cùng mẫu số. 32x^(-1) + 2.9x^(-1) = (405/13).(31/31) + 5.(13)^2 + 1 = (1493/31).(13/13) + 5.(31)^2 + 1 = 9314/35 Bước 4: Tính toán các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/13.(31) + 5.(13)^2 + 1 = 1493.(13)/31.(13) + 5.(31)^2 + 1 = 9314/35 Bước 5: Tính tổng các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/403 + 5.(13)^2 + 1 = 1493.(13)/403 + 5.(31)^2 + 1 = 9314/35 Bước 6: Đưa phương trình về dạng chuẩn. 32x^(-1) + 2.9x^(-1) - 9314/35 = 0 Bước 7: Giải phương trình. Để giải phương trình này, ta cần biến đổi nó về dạng tương đương. Nhân cả hai vế của phương trình với 35 để loại bỏ mẫu số. 35.(32x^(-1) + 2.9x^(-1) - 9314/35) = 0 1120x^(-1) + 101.5x^(-1) - 9314 = 0 Bước 8: Tìm giá trị của x. Để tìm giá trị của x, ta cần giải phương trình này. Tuy nhiên, phương trình này không thể giải được vì x có mũ là -1.

Bình luận (0)
KV
Xem chi tiết
IK
2 tháng 5 2022 lúc 21:53

\(\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}=\dfrac{1}{5}\)

Bình luận (0)
KV
2 tháng 5 2022 lúc 21:54

x = nhân ạ

Bình luận (0)
H24
2 tháng 5 2022 lúc 21:55

\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\)

\(=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\times\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\times\left(\dfrac{4}{4}-\dfrac{1}{4}\right)\times\left(\dfrac{5}{5}-\dfrac{1}{5}\right)\)

\(=\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\)

\(=\dfrac{1\times2\times3\times4}{2\times3\times4\times5}\)

\(=\dfrac{1}{5}\)

Bình luận (0)
NT
Xem chi tiết
TT
16 tháng 1 2021 lúc 10:51

a/ \(\Leftrightarrow9x^2=36\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-6\end{matrix}\right.\)

\(\Leftrightarrow x=\pm2\)

b/ \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\) (do \(x^2+\dfrac{1}{2}>0\))

\(\Leftrightarrow x=\pm1\)

c/ Có \(\left|x+4\right|\ge0\forall x\)

=> \(\left|x+4\right|+5\ge5>0\forall x\)

\(\Rightarrow\left|x+4\right|+5=0\left(vô-lí\right)\)

\(\Rightarrow x\in\varnothing\)

d/ \(\sqrt{2x}-3-1=0\)

\(\Leftrightarrow\sqrt{2x}=4\)

\(\Leftrightarrow2x=16\)

\(\Leftrightarrow x=8\)

Bình luận (1)
AT
Xem chi tiết
NT
Xem chi tiết
H24
1 tháng 3 2023 lúc 23:51

Bài mik có làm gần đây , bn tham khảo!

loading...

Bình luận (0)
NC
Xem chi tiết
NN
28 tháng 12 2022 lúc 11:31

\(\dfrac{1}{2}A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{2023}\)

\(A-\dfrac{1}{2}A=\left(\dfrac{1}{2}\right)^{2023}-1\)

\(\dfrac{1}{2}A=\left(\dfrac{1}{2}\right)^{2023}-1\)

\(A=\dfrac{1}{2^{2022}}-2\)

Bình luận (0)
DV
28 tháng 12 2022 lúc 11:50

A−12A=(12)2023−1A−12A=(12)2023−1

A=122022−2

Bình luận (0)
LT
Xem chi tiết
NA
21 tháng 3 2017 lúc 21:00

a)\(\frac{5}{2}-3\left(\frac{1}{3}-x\right)=\frac{1}{4}-7x\)

\(\Leftrightarrow\frac{5}{2}-1+x=\frac{1}{4}-7x\)

\(\Leftrightarrow8x=-\frac{5}{4}\)

\(\Leftrightarrow x=-\frac{5}{32}\)

c)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2003}\)

\(\Leftrightarrow x+1=2003\)

\(\Leftrightarrow x=2002\)

Bình luận (0)