Những câu hỏi liên quan
NT
Xem chi tiết
KT
Xem chi tiết
PN
17 tháng 7 2016 lúc 18:36

Ta có:

\(2x^2+x=3y^2+y\)

\(\Leftrightarrow\)  \(\left(x-y\right)\left(2x+2y+1\right)=y^2\)  

Gọi  \(d\)  là  \(ƯCLN\left(x-y,2x+2y+1\right)\)  (với  \(d\in N^{\text{*}}\)). Khi đó, ta suy ra

\(\hept{\begin{cases}\left(x-y\right)\leftrightarrow\left(1\right)\\\left(2x+2y+1\right)\leftrightarrow\left(2\right)\end{cases}}\)  chia hết cho  \(d\)  \(\Rightarrow\)  \(\left(x-y\right)\left(2x+2y+1\right)\)  chia hết cho  \(d^2\)

Hay  \(y^2\)  chia hết cho  \(d^2\)  tức là  \(y\) chia hết cho  \(d\)

Nhưng vì  \(x-y\)   chia hết cho  \(d\)  (theo  \(\left(1\right)\)) nên  \(x\)  cũng phải chia hết cho  \(d\)

\(\Rightarrow\)  \(2x+2y\)  chia hết  cho  \(d\)  \(\left(3\right)\)

Từ  \(\left(2\right)\) và    \(\left(3\right)\)  suy ra  \(1\)  chia hết cho  \(d\)

Do đó,  \(d=1\)  đồng nghĩa với việc  \(\left(x-y,2x+2y+1\right)=1\)

Vậy,  phân số  \(\frac{x-y}{2x+2y+1}\)  tối giản vì cùng  nguyên tố cùng nhau

Bình luận (0)
TQ
Xem chi tiết
TV
Xem chi tiết
NH
Xem chi tiết
NK
Xem chi tiết
NL
17 tháng 1 2017 lúc 20:13

tk mik nha ! mik đang bị âm điểm! ko ai trả lời mà!

Bình luận (0)
NM
Xem chi tiết
HN
Xem chi tiết
TH
Xem chi tiết