Tìm ƯCLN ( n(n+1);2n+1)
Nhờ các bạn giải hộ ghi rõ cách làm. Xin cảm ơn
a. Tìm ƯCLN 2 n + 2 ; 2 n ; n ∈ N * .
b. Tìm ƯCLN 3 n + 2 ; 2 n + 1 với n ∈ N .
a. Tìm ƯCLN(2n+2;2n); (n ∈ N*) .
b. Tìm ƯCLN(3n+2 ;2n+1) với n ∈ N
a, Gọi d là ƯCLN(2n+2;2n)
=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d
Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.
Vậy d = 2
b, Gọi ƯCLN(3n+2 ;2n+1) = d
Ta có: 3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d
=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d
Vậy d = 1
Cho n ϵ N. Tìm: a) ƯCLN(n; n + 1)
b)ƯCLN( 2n + 1; 4n + 18)
Tìm ƯCLN (3n+2;2n+1) với n thuộc N
TÌm ƯCLN(2n+3;4n+6) với n thuộc N
a,Tìm ƯCLN (2n+1;3n+1)(n thuộc N)
Tìm ƯCLN(2n-1;9n+4)(n thuộc N sao)
Cho m,n thuộc N* thỏa ƯCLN(m;n)=1.Tìm ƯCLN (4m+3n;5m+2n).
Cho m,n là hai số tự nhiên thỏa mãn ƯCLN(m,n)=1. Tìm ƯCLN(m2,n)
Cho n thuộc N*. Tìm ƯCLN (n!+1; (n+1)!+1)
Tìm ƯCLN (2n+1) và 2n (n+1) (n€N)
Tìm ƯCLN của 2n+1;n(n+1) với n thuộc N*