Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
VA
Xem chi tiết
NN
7 tháng 12 2015 lúc 16:59

a)Tích của a và b là:36.6=216

a=6.m

b=6.n

m,n thuộc N và UCLN(m,n)=1

Ta có:a .b =216

 hay 6.m.6.n=216

       36(m.n)=216

           m.n=216:36

          m.n=6

m       1          2

n       6           3

=>a          6          12

    b         36          18

Vậy ta có(a;b) hoặc(b;a) ={(6;36);(12;18)}

b)UCLN(a,b)=4500:300=15

a=15.m

b=15.n

m,n thuộc N và UCLN(m,n)=1

Ta có:a .b=4500

  hay 15.m.15.n=4500

        225(m.n)=4500

              m.n=4500:225

              m.n=20

m          1            4

n           20          5

=>a           15            60

    b           300          75

Vậy ta có các cặp số(a,b) hoặc(b,a)={(15;300);(60;75)}

c)a=6.m

  b=6.n

m,n thuộc N và UCLN(m,n)=1

Ta có:a +b=30

  hay 6.m+6.n=30

         6(m.n)=30

           m.n=30:6

          m.n=5

m           1

n            5

=>a          6

    b          30

Vậy ta có cặp số (a,b)hoặc(b,a)={6;30}

Tick mình nha bạn ơi!Mình giải hết ra cho bạn rồi đó!

 

Bình luận (0)
HN
Xem chi tiết
H24
Xem chi tiết
BD
16 tháng 11 2016 lúc 14:17

Vì BCNN (a,b) = 300 và ab = 4500

Suy ra: a.b = 300.15 = 4500

Ước chung lớn nhất ( a,b ) = 15

Vì ƯCLN (a,b) = 15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).

Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.

Mà a.b =4500 nên ta có: 15m.15n =4500

                                     15.15.m.n =4500

                                     152.m.n  =4500

                                     225.m.n  =4500

                                   =>    m.n  = 20

Suy ra: m=1 và n=20  hoặc  m=4 và n=5.

Mà m+1 =n =>m=4 và n =5.

Vậy: a= 15.4= 60 ; b= 15.5= 75.

Bình luận (0)
NA
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
TM
25 tháng 9 2017 lúc 15:45

a) 48=24.3 ; 60=22.3.5

=>ƯCLN(48,60)=22.3=12 ; BCNN(48,60)=24.3.5=240

b) ƯCLN(48,60).BCNN(48,60)=12.240=2880 ; 48.60=2880

=> ƯCLN(48,60).BCNN(48,60)=48.60

Bình luận (0)
TV
19 tháng 11 2017 lúc 10:55

a,

ƯCLN(48,60)=240

BCLN(48,60)=12

b,

ƯCLN(48,60)>BCLN(48,60)

Bình luận (0)
TT
27 tháng 12 2020 lúc 20:41

a) 48=24.3 ; 60=22.3.5

=>ƯCLN(48,60)=22.3=12 ; BCNN(48,60)=24.3.5=240

b) ƯCLN(48,60).BCNN(48,60)=12.240=2880 ; 48.60=2880

=> ƯCLN(48,60).BCNN(48,60)=48.60

Bình luận (0)
SM
Xem chi tiết
NT
27 tháng 12 2021 lúc 17:56

a: UCLN=30

BCNN=360

b: UCLN=12

BCNN=720

Bình luận (0)
H24
Xem chi tiết
BL
16 tháng 12 2017 lúc 14:48

Câu hỏi của Bùi Đức Lộc - Tiếng Việt lớp 1 - Học toán với OnlineMath

Nhớ xem và !

Bình luận (0)
NT
16 tháng 12 2017 lúc 14:51

a, 24 và 10

b, 6 và 30

c, 6 và 36

d, <không có trường hợp nào>

e, 36 và 6

Chúc bạn học giỏi !

<Lưu ý : Bạn xem lại câu d>

Bình luận (0)
DH
20 tháng 12 2017 lúc 20:49

d) Do (a,b) = 5 => a = 5m

                              b = 5n

                ( m,n ) = 1

a : b = 2,6 => a/b = 13/5 = 5m/5n => m = 13 ; n =5

=> a = 65                b = 25

Bình luận (0)
PM
Xem chi tiết
LP
15 tháng 10 2023 lúc 22:06

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

Bình luận (0)
HL
15 tháng 10 2023 lúc 21:03

 Ko bt

Bình luận (0)
TM
15 tháng 10 2023 lúc 21:08

Tớ chịu🤔

Bình luận (0)