Những câu hỏi liên quan
CT
Xem chi tiết
TD
10 tháng 12 2014 lúc 20:52

1/2n+5va3n+7

goi UCLL(2n+5va3n+7)la d ta co

2n+5 chia het d3n+7 chia het d(2n+5)/(3n+7)chia het d3.(2n+5)/ 2.(3n+7)chia het d(6n+15)/(6n+14)chia het d1chia het dd=1.vay UCLN(2N+5)/(3N+7)=1NGUYEN TO CUNG NHAU

 

 

Bình luận (0)
BL
10 tháng 12 2014 lúc 21:23

3/ Gọi d là ước chung của  n + 3 và 2n + 5

Suy ra: 2(n + 3) - (2n + 5) chia hết cho d

2n + 6 - 2n - 5 = 1 chia hết cho d nên d = 1

Vậy UC(n + 3, 2n + 5) = 1 

Bình luận (0)
DD
4 tháng 1 2021 lúc 21:00

= 1 hahaha

Bình luận (0)
 Khách vãng lai đã xóa
GH
Xem chi tiết
NT
15 tháng 11 2021 lúc 22:39

a: UCLN(3n+1;3n+10)=9

Bình luận (0)
AH
16 tháng 11 2021 lúc 0:18

Lời giải:

a. Gọi d là ƯCLN của $3n+1, 3n+10$

\(\Rightarrow \left\{\begin{matrix} 3n+1\vdots d\\ 3n+10\vdots d\end{matrix}\right.\Rightarrow (3n+10)-(3n+1)\vdots d\)

\(\Rightarrow 9\vdots d\)

\(\Rightarrow d=\left\{1;3;9\right\}\)

Mà $3n+1\vdots d$ nên $d$ không thể là $3,9$

$\Rightarrow d=1$

Vậy ƯCLN $(3n+1,3n+10)=1$

b.

Gọi $d$ là ƯCLN $(2n+1,n+3)$

\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ n+3\vdots d\end{matrix}\right.\left\{\begin{matrix} 2n+1\vdots d\\ 2n+6\vdots d\end{matrix}\right.\)

\(\Rightarrow (2n+6)-(2n+1)\vdots d\Rightarrow 5\vdots d\)

\(\Rightarrow d\in\left\{1;5\right\}\)
 

Bình luận (0)
TD
Xem chi tiết
E1
Xem chi tiết
NH
Xem chi tiết
LC
17 tháng 8 2015 lúc 20:52

Gọi ƯC(3n+2,2n+1)=d

=>3n+2 chia hết cho d=>2.(3n+2) chia hết cho d=>6n+4 chia hết cho d

    2n+1 chia hết cho d=>3.(2n+1) chia hết cho d=>6n+3 chia hết cho d

=>6n+4-(6n+3) chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(3n+2,2n+1)=1

=>ƯCLN(3n+2,2n+1)=1

Vậy ƯCLN(3n+2,2n+1)=1

Bình luận (0)
DA
Xem chi tiết
NN
12 tháng 1 2017 lúc 16:28

Gọi \(ƯCLN\left(2n+1,3n+5\right)=d.\) 

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+5⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+10⋮d\end{cases}}\)

\(\Rightarrow\left(6n+10\right)-\left(6n+3\right)⋮d\Rightarrow7⋮d\Rightarrow d\in\left\{-7;-1;1;7\right\}\)

vậy \(d\in\left\{-7;-1;4;7\right\}\)

Bình luận (0)
TP
12 tháng 1 2017 lúc 16:31

gọi d \(\in\) ƯC(2n+1;3n+5), d\(\in\)N*

=> 2n+1\(⋮\) d và 3n+5 \(⋮\)d

=>3(2n+1)\(⋮\)d và 2(3n+5)\(⋮\)d.

=>6n+3 \(⋮\)d và 6n+10 \(⋮\)d

=> (6n+10)-(6n+3)\(⋮\)d.

=>7 \(⋮\)d

=> d \(\in\)Ư(7)={1;7}

- xét: 2n+1 \(⋮\)7

=>2n+1+7\(⋮\)7 (vì 7\(⋮\)7)

=>2n+8 \(⋮\)

=>2(n+4)\(⋮\)

=>n+4 \(⋮\)7 ( vì (2;7)=1)

=>n+4=7k ( k\(\in\)N*)

=>n=7k-4.

khi đó: 3n+5=3.(7k-4)+5 = 21k-12+5 =  21k-7 \(⋮\)  7 

vậy ƯCLN của (2n+1 và 3n+5) = 7 khi n=7k-4( k\(\in\)N*)

và ƯCLN của (2n+1 và 3n+5) = 1 khi n khác 7k-4( k\(\in\)N*)

chúc bạn năm mới vui vẻ, k nha. đúng 100% luôn.

Bình luận (0)
DA
12 tháng 1 2017 lúc 18:31

CẢM ƠN

Bình luận (0)
VM
Xem chi tiết
NQ
12 tháng 1 2016 lúc 19:53

Đặt UCLN(3n  +1 ; 2n  + 1) = d

2n + 1 chia hết cho d => 6n + 3 chia hết cho d

3n + 1 chia hết cho d => 6n  +2 chia hết cho d

=> [(6n + 3) - (6n  +2)] chia hết cho d

1 chia hết cho d  => d = 1

UCLN(2n + 1 ; 3n  +1) = 1 

Bình luận (0)
PB
Xem chi tiết
CT
10 tháng 2 2017 lúc 2:36

a, Gọi d là ƯCLN(2n+2;2n)

=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d

Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.

Vậy d = 2

b, Gọi ƯCLN(3n+2 ;2n+1) = d

Ta có:  3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d

=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d

Vậy d = 1

Bình luận (0)
TD
Xem chi tiết