Những câu hỏi liên quan
J
Xem chi tiết
HP
26 tháng 4 2017 lúc 20:09

bn xem lại điều kiện 

Bình luận (0)
J
26 tháng 4 2017 lúc 20:49

cái này tôi nháp nhiều lần rồi, với lại đây là đề thi hsg mà, k sai đc đâu

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NU
19 tháng 3 2020 lúc 14:21

\(x+\frac{1}{y}=y+\frac{1}{z}\Rightarrow x-y=\frac{1}{z}-\frac{1}{y}=\frac{z-y}{zy}\)

\(y+\frac{1}{z}=z+\frac{1}{x}\Rightarrow y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\)

\(z+\frac{1}{x}=x+\frac{1}{y}\Rightarrow z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{y-z}{zy}\cdot\frac{z-x}{zx}\cdot\frac{x-y}{xy}\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=\frac{\left(y-z\right)\left(z-x\right)\left(x-y\right)}{x^2y^2z^2}\)

\(\Rightarrow x^2y^2z^2\left(x-y\right)\left(y-z\right)\left(z-x\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

\(\Rightarrow\left(x^2y^2z^2-1\right)\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2-1=0\\\left(x-y\right)\left(y-z\right)\left(z-x\right)=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2y^2z^2=1\\x=y=z\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
BL
Xem chi tiết
PL
Xem chi tiết
BH
25 tháng 1 2022 lúc 7:56

giả sử cả 3 số xyz đều nhỏ hơn 1 

=>x+y+z<1+1+1=3

ta có x+y+z>\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)=\(\dfrac{xy+yz+xz}{xyz}\)\(\ge\)\(\dfrac{3\sqrt[3]{\left(abc\right)^2}}{abc}\) =\(\dfrac{3}{\sqrt[3]{abc}}=\dfrac{3}{\sqrt[3]{1}}=3\) vậy x+y+z >3

từ đó sẽ có ít nhất 1 trong 3 số lớn hơn 1

Bình luận (0)
HT
Xem chi tiết
HP
30 tháng 1 2017 lúc 9:58

x+1/y=y+1/z => x-y=1/z-1/y=(y-z)/yz 

Tương tự y-z=(z-x)/zx ; z-x=(x-y)/xy

Nhân theo vế các đẳng thức trên  ta đc:

(x-y)(y-z)(z-x)=(x-y)(y-z)(z-x)/x2y2z2

=>(x-y)(y-z)(z-x)x2y2z2-(x-y)(y-z)(z-x)=0

=>(x-y)(y-z)(z-x)(x2y2z2-1)=0

=>x-y=0 hoặc y-z=0 hoặc z-x=0 hoặc x2y2z2-1=0

=>x=y=z hoặc x2y2z2=1(đfcm)

Bình luận (0)
H24
31 tháng 1 2017 lúc 7:50
Bài làm mắc hai lỗi nghiêm trọng:
Bình luận (0)
H24
1 tháng 2 2017 lúc 17:15

\(\hept{\begin{cases}x-y=\frac{y-z}{yz}\\y-z=\frac{z-x}{xz}\\z-x=\frac{\left(x-y\right)}{xy}\end{cases}}\) Hiển nhiên với x=y=z là nghiệm của hệ (*)

Nếu \(\hept{\begin{cases}x-y\ne0\\y-z\ne0\\z-x\ne0\end{cases}}\) Nhân theo vế ta được \(\left(x-y\right)\left(y-z\right)\left(z-x\right)\left[1-\frac{1}{\left(xyz\right)^2}\right]=0\Rightarrow\left(xyz\right)^2=1\)(**)

Từ (*)(**)=> dpcm

Bình luận (0)
LV
Xem chi tiết
JN
8 tháng 1 2022 lúc 7:31

why in olm math is asked the most

Bình luận (0)
 Khách vãng lai đã xóa
JN
8 tháng 1 2022 lúc 7:31

anglisht

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
NT
27 tháng 7 2023 lúc 21:44

(x+y+z)^2=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+xz+yz=0

=>xy/xyz+xz/xyz+yz/xyz=0

=>1/x+1/y+1/z=0

Bình luận (0)
PK
Xem chi tiết
NP
14 tháng 9 2018 lúc 15:32

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=0\)

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

Bình luận (0)
IY
14 tháng 9 2018 lúc 15:33

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

=> 1/xy + 1/yz + 1/xz = 0

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

Bình luận (0)
TD
Xem chi tiết
NT
25 tháng 7 2023 lúc 22:37

2:

-8x^6-12x^4y-6x^2y^2-y^3

=-(8x^6+12x^4y+6x^2y^2+y^3)

=-(2x^2+y)^3

3:

=(1/3)^2-(2x-y)^2

=(1/3-2x+y)(1/3+2x-y)

Bình luận (1)