Cho 2 STN 2n+1 và 3n+4 . CMR : 2n+1 là UCLN của 3n+4
cho a= n^3+2n; b=n^4+3n^2+1, n là số tự nhiên, tìm UCLN của a và b
Tìm STN là ƯC của
a) n+2 và 3n-2
b) n-1 và 2n+3
c) 2n+1 và 3n-2
1.tìm các stn n đe 2n+7 và n+1 nguyên tố cùng nhau
2.cmr (21n+4)và 14n +3 ntcn
3.tìm stn để (3n-4) chia hết cho (6-n)
Biết a,b là 2 STN ko nguyên tố cùng nhau thỏa mãn a=2n+3; b=3n+1. Khi đó UCLN(a;b) là:...
1 nha
toan lop 6 violympic tick nhe
Bài 1 : Tìm số tự nhiên a biết 473 chia a dư 23 , 396 chia a du 30
Bài 2 : Chứng minh rằng mọi n thuộc N thì :
a, UCLN ( n, 2n + 1 ) = 1
b, UCLN ( 3n + 1 , 4n + 1 ) = 1
Bài 4 : Tìm ước chung của 2n + 1 và 3n + 1.
Vì 396 : a dư 30 nên a > 30
Theo bài ra ta có :
396 chia a dư 30
=> ( 396 - 30 ) \(⋮\)a => 366 \(⋮\)a
Lại có : 473 chia a dư 23
=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a
Từ (1) và (2) => a \(\in\)ƯC( 366;450)
Ta có : 366 = 2 .3 . 61
450 = 2 . 32 . 52
Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6
=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }
Vậy a \(\in\){1;2;3;6}
Bài 1: CMR: tổng của 3 STN liên tiếp thì chia hết cho 3, còn tổng của 4 STN liên tiếp thì ko chia hết cho 4 ?
Bài 2: CMR: tích 2 STN liên tiếp thì : hết cho 2 ?
Bài 3: Tìm n \(\in\) N để:
* n + 4 : hết cho n
* 2n + 3 : hết cho n
* 3n + 7 : hết cho n
* 27 - 5n : hết cho n
*3n = 1 : hết cho 11 - 2n ( n < 6 )
tìm n là STN:
3n + 4 chia hết cho n - 1
2n + 1 chia hết cho 16 - 3n
Cách 1 :
Ta có : 3n + 4 chia hết cho n - 1
=> 3n - 3 + 7 chia hết cho n - 1
=> 3(n - 1) + 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
n - 1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
Cách 2 :
Ta có : \(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=3+\frac{7}{n-1}\)
Để 3n + 4 chia hết cho n - 1 thì 7 chia hết cho n - 1
=> 7 chia hết cho n - 1
=> n - 1 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng :
n - 1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
a)\(\frac{3n+4}{n-1}\)= \(\frac{3n-3+7}{n-1}\)= \(\frac{3.\left(n-1\right)}{n-1}\)+ \(\frac{7}{n+1}\)= \(3+\frac{7}{n-1}\)
Để \(3n+4\)\(⋮\)\(n-1\)thì \(n-1\)\(\in\)\(Ư\left(7\right)\)
Ta có bảng sau :
\(n-1\)\(1\) \(-1\) \(7\) \(-7\)
\(n\) \(2\) \(0\) \(8\) \(-6\).
Vậy \(n\)\(\in\)\([\)\(2\); \(0\); \(8\); \(-6\)\(]\).
a)tìm UCLN của 2n-1 và 9n+4
b)tìm số tự nhiên 9n+24 và 3n+4 là các số nguyên tố
Tim STN n de
a) n+6 chia hết cho n
b) 3n+4 chia het cho n-1
c) 2n+1 chia het cho 16-3n
d) 3-2n chia hết cho n+1
e) n^ 2 + 2n + 6 chia hết cho n+4
e) n2 + 2n + 6 chia hết cho n + 4
n2 + 4n - 2n + 6 chia hết cho n + 4
n.(n + 4) - 2n + 6 chia hết cho n + 4
2n + 6 chia hết cho n + 4
2n + 8 - 2 chia hết cho n + 4
2.(n + 4) - 2 chia hết cho n + 4
=> - 2 chia hết cho n + 4
=> n + 4 thuộc Ư(-2) = {1 ; -1 ; 2 ; -2}
Xét 4 trường hợp ,ta có :
n + 4 = 1 => n = -3
n + 4 = -1 => n = -5
n + 4 = 2 => n = -2
n + 4 = -2 => n = -6